summaryrefslogtreecommitdiffstats
path: root/eval/src/tests/ann/sift_benchmark.cpp
blob: f64351166c1c81c553c6a4f25211f3ff5531cb0e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// Copyright 2019 Oath Inc. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include <vespa/vespalib/testkit/test_kit.h>
#include <vespa/vespalib/util/priority_queue.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <chrono>

#define NUM_DIMS 128
#define NUM_DOCS 1000000
#define NUM_Q 1000

#include "doc_vector_access.h"
#include "nns.h"
#include "for-sift-hit.h"
#include "for-sift-top-k.h"

std::vector<TopK> bruteforceResults;

struct PointVector {
    float v[NUM_DIMS];
    using ConstArr = vespalib::ConstArrayRef<float>;
    operator ConstArr() const { return ConstArr(v, NUM_DIMS); }
};

static PointVector *generatedQueries =
    (PointVector *) malloc(NUM_Q * sizeof(PointVector));

static PointVector *generatedDocs =
    (PointVector *) malloc(NUM_DOCS * sizeof(PointVector));

struct DocVectorAdapter : public DocVectorAccess<float>
{
    vespalib::ConstArrayRef<float> get(uint32_t docid) const override {
        ASSERT_TRUE(docid < NUM_DOCS);
        return generatedDocs[docid];
    }
};

double computeDistance(const PointVector &query, uint32_t docid) {
    const PointVector &docvector = generatedDocs[docid];
    return l2distCalc.l2sq_dist(query, docvector);
}

void read_queries(std::string fn) {
    int fd = open(fn.c_str(), O_RDONLY);
    ASSERT_TRUE(fd > 0);
    int d;
    size_t rv;
    fprintf(stderr, "reading %u queries from %s\n", NUM_Q, fn.c_str());
    for (uint32_t qid = 0; qid < NUM_Q; ++qid) {
        rv = read(fd, &d, 4);
        ASSERT_EQUAL(rv, 4u);
        ASSERT_EQUAL(d, NUM_DIMS);
        rv = read(fd, &generatedQueries[qid].v, NUM_DIMS*sizeof(float));
        ASSERT_EQUAL(rv, sizeof(PointVector));
    }
    close(fd);
}

void read_docs(std::string fn) {
    int fd = open(fn.c_str(), O_RDONLY);
    ASSERT_TRUE(fd > 0);
    int d;
    size_t rv;
    fprintf(stderr, "reading %u doc vectors from %s\n", NUM_DOCS, fn.c_str());
    for (uint32_t docid = 0; docid < NUM_DOCS; ++docid) {
        rv = read(fd, &d, 4);
        ASSERT_EQUAL(rv, 4u);
        ASSERT_EQUAL(d, NUM_DIMS);
        rv = read(fd, &generatedDocs[docid].v, NUM_DIMS*sizeof(float));
        ASSERT_EQUAL(rv, sizeof(PointVector));
    }
    close(fd);
}

using TimePoint = std::chrono::steady_clock::time_point;
using Duration = std::chrono::steady_clock::duration;

double to_ms(Duration elapsed) {
    std::chrono::duration<double, std::milli> ms(elapsed);
    return ms.count();
}

void read_data(std::string dir) {
    TimePoint bef = std::chrono::steady_clock::now();
    read_queries(dir + "/sift_query.fvecs");
    TimePoint aft = std::chrono::steady_clock::now();
    fprintf(stderr, "read queries: %.3f ms\n", to_ms(aft - bef));
    bef = std::chrono::steady_clock::now();
    read_docs(dir + "/sift_base.fvecs");
    aft = std::chrono::steady_clock::now();
    fprintf(stderr, "read docs: %.3f ms\n", to_ms(aft - bef));
}


struct BfHitComparator {
    bool operator() (const Hit &lhs, const Hit& rhs) const {
        if (lhs.distance < rhs.distance) return false;
        if (lhs.distance > rhs.distance) return true;
        return (lhs.docid > rhs.docid);
    }
};

class BfHitHeap {
private:
    size_t _size;
    vespalib::PriorityQueue<Hit, BfHitComparator> _priQ;
public:
    explicit BfHitHeap(size_t maxSize) : _size(maxSize), _priQ() {
        _priQ.reserve(maxSize);
    }
    ~BfHitHeap() {}
    void maybe_use(const Hit &hit) {
        if (_priQ.size() < _size) {
            _priQ.push(hit);
        } else if (hit.distance < _priQ.front().distance) {
            _priQ.front() = hit;
            _priQ.adjust();
        }
    }
    std::vector<Hit> bestHits() {
        std::vector<Hit> result;
        size_t i = _priQ.size();
        result.resize(i);
        while (i-- > 0) {
            result[i] = _priQ.front();
            _priQ.pop_front();
        }
        return result;
    }
};

TopK bruteforce_nns(const PointVector &query) {
    TopK result;
    BfHitHeap heap(result.K);
    std::vector<float> tmp_v(NUM_DIMS);
    for (uint32_t docid = 0; docid < NUM_DOCS; ++docid) {
        const PointVector &docvector = generatedDocs[docid];
        double d = l2distCalc.l2sq_dist(query, docvector, tmp_v);
        Hit h(docid, d);
        heap.maybe_use(h);
    }
    std::vector<Hit> best = heap.bestHits();
    for (size_t i = 0; i < result.K; ++i) {
        result.hits[i] = best[i];
    }
    return result;
}

void verifyBF(uint32_t qid) {
    const PointVector &query = generatedQueries[qid];
    TopK &result = bruteforceResults[qid];
    double min_distance = result.hits[0].distance;
    std::vector<double> all_c2;
    for (uint32_t i = 0; i < NUM_DOCS; ++i) {
        double dist = computeDistance(query, i);
        if (dist < min_distance) {
            fprintf(stderr, "WARN dist %.9g < mindist %.9g\n", dist, min_distance);
        }
        EXPECT_FALSE(dist+0.000001 < min_distance);
        if (qid == 6) all_c2.push_back(dist / min_distance);
    }
    if (all_c2.size() != NUM_DOCS) return;
    std::sort(all_c2.begin(), all_c2.end());
    for (uint32_t idx : { 1, 3, 10, 30, 100, 300, 1000, 3000, NUM_DOCS/2, NUM_DOCS-1}) {
        fprintf(stderr, "c2-factor[%u] = %.3f\n", idx, all_c2[idx]);
    }
}

TEST("require that brute force works") {
    TimePoint bef = std::chrono::steady_clock::now();
    for (uint32_t cnt = 0; cnt < NUM_Q; ++cnt) {
        const PointVector &query = generatedQueries[cnt];
        bruteforceResults.emplace_back(bruteforce_nns(query));
    }
    TimePoint aft = std::chrono::steady_clock::now();
    fprintf(stderr, "timing for brute force: %.3f ms = %.3f ms per query\n",
            to_ms(aft - bef), to_ms(aft - bef)/NUM_Q);
    for (int cnt = 0; cnt < NUM_Q; cnt = (cnt+1)*2) {
        verifyBF(cnt);
    }
}

using NNS_API = NNS<float>;

TopK find_with_nns(uint32_t sk, NNS_API &nns, uint32_t qid) {
    TopK result;
    const PointVector &qv = generatedQueries[qid];
    vespalib::ConstArrayRef<float> query(qv.v, NUM_DIMS);
    auto rv = nns.topK(result.K, query, sk);
    for (size_t i = 0; i < result.K; ++i) {
        result.hits[i] = Hit(rv[i].docid, rv[i].sqDistance);
    }
    return result;
}

void verify_nns_quality(uint32_t sk, NNS_API &nns, uint32_t qid) {
    TopK perfect = bruteforceResults[qid];
    TopK result = find_with_nns(sk, nns, qid);
    int recall = perfect.recall(result);
    EXPECT_TRUE(recall > 40);
    double sum_error = 0.0;
    double c_factor = 1.0;
    for (size_t i = 0; i < result.K; ++i) {
        double factor = (result.hits[i].distance / perfect.hits[i].distance);
        sum_error += factor;
        c_factor = std::max(c_factor, factor);
    }
    EXPECT_TRUE(c_factor < 1.5);
    fprintf(stderr, "quality sk=%u: query %u: recall %d, c2-factor %.3f, avg c2: %.3f\n",
            sk, qid, recall, c_factor, sum_error / result.K);
    if (qid == 6) {
        for (size_t i = 0; i < 10; ++i) {
            fprintf(stderr, "topk[%zu] BF{%u %.3f} index{%u %.3f}\n",
                    i,
                    perfect.hits[i].docid, perfect.hits[i].distance,
                    result.hits[i].docid, result.hits[i].distance);
        }
    }
}

TEST("require that Locality Sensitive Hashing mostly works") {
    TimePoint bef = std::chrono::steady_clock::now();
    DocVectorAdapter adapter;
    std::unique_ptr<NNS_API> nns = make_rplsh_nns(NUM_DIMS, adapter);
    for (uint32_t i = 0; i < NUM_DOCS; ++i) {
        nns->addDoc(i);
    }
    fprintf(stderr, "added %u documents...\n", NUM_DOCS);
    TimePoint aft = std::chrono::steady_clock::now();
    fprintf(stderr, "build RPLSH index: %.3f ms\n", to_ms(aft - bef));

    for (uint32_t search_k : { 200, 1000 }) {
        bef = std::chrono::steady_clock::now();
        for (int cnt = 0; cnt < NUM_Q; ++cnt) {
            find_with_nns(search_k, *nns, cnt);
        }
        aft = std::chrono::steady_clock::now();
        fprintf(stderr, "timing for RPLSH search_k=%u: %.3f ms = %.3f ms per query\n",
                search_k, to_ms(aft - bef), to_ms(aft - bef)/NUM_Q);
        for (int cnt = 0; cnt < NUM_Q; ++cnt) {
            verify_nns_quality(search_k, *nns, cnt);
        }
    }
}

TEST("require that Indexing via NNS api mostly works") {
    fprintf(stderr, "trying indexing...\n");
    TimePoint bef = std::chrono::steady_clock::now();
    DocVectorAdapter adapter;
    std::unique_ptr<NNS_API> nns = make_annoy_nns(NUM_DIMS, adapter);
    for (uint32_t i = 0; i < NUM_DOCS; ++i) {
        nns->addDoc(i);
    }
    fprintf(stderr, "added %u documents...\n", NUM_DOCS);
    nns->topK(1, adapter.get(0), 1);
    TimePoint aft = std::chrono::steady_clock::now();
    fprintf(stderr, "build annoy index: %.3f ms\n", to_ms(aft - bef));

    for (uint32_t search_k : { 10000, 20000 }) {
        bef = std::chrono::steady_clock::now();
        for (int cnt = 0; cnt < NUM_Q; ++cnt) {
            find_with_nns(search_k, *nns, cnt);
        }
        aft = std::chrono::steady_clock::now();
        fprintf(stderr, "timing for index search_k=%u: %.3f ms = %.3f ms per query\n",
                search_k, to_ms(aft - bef), to_ms(aft - bef)/NUM_Q);
        for (int cnt = 0; cnt < NUM_Q; ++cnt) {
            verify_nns_quality(search_k, *nns, cnt);
        }
    }
}

int main(int argc, char **argv) {
    TEST_MASTER.init(__FILE__);
    std::string sift_dir = ".";
    if (argc > 1) {
        sift_dir = argv[1];
    } else {
        char *home = getenv("HOME");
        if (home) {
            sift_dir = home;
            sift_dir += "/sift";
        }
    }
    read_data(sift_dir);
    TEST_RUN_ALL();
    return (TEST_MASTER.fini() ? 0 : 1);
}