aboutsummaryrefslogtreecommitdiffstats
path: root/eval/src/tests/ann/xp-annoy-nns.cpp
blob: 49c1f7053e9e5501aebef46e3d281cb083f17f51 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "nns.h"
#include "std-random.h"
#include <assert.h>
#include <cinttypes>
#include <algorithm>
#include <queue>
#include <set>

using V = vespalib::ConstArrayRef<float>;
class AnnoyLikeNns;
inline namespace xpannoynns { struct Node; }

static size_t plane_dist_cnt = 0;
static size_t w_cen_dist_cnt = 0;
static size_t leaf_split_cnt = 0;
static size_t find_top_k_cnt = 0;
static size_t find_cand_cnt = 0;

using QueueNode = std::pair<double, Node *>;
using NodeQueue = std::priority_queue<QueueNode>;

inline namespace xpannoynns {

struct Node {
    Node() {}
    virtual ~Node() {}
    virtual Node *addDoc(uint32_t docid, V vector, AnnoyLikeNns &meta) = 0;
    virtual int remove(uint32_t docid, V vector) = 0;
    virtual void findCandidates(std::set<uint32_t> &cands, V vector, NodeQueue &queue, double minDist) const = 0;
    virtual void filterCandidates(std::set<uint32_t> &cands, V vector, NodeQueue &queue, double minDist, const BitVector &skipDocIds) const = 0;
    virtual void stats(std::vector<uint32_t> &depths) = 0;
};

}

struct LeafNode : public Node {
    std::vector<uint32_t> docids;

    LeafNode() : Node(), docids() { docids.reserve(128); }

    Node *addDoc(uint32_t docid, V vector, AnnoyLikeNns &meta) override;
    int remove(uint32_t docid, V vector) override;
    void findCandidates(std::set<uint32_t> &cands, V vector, NodeQueue &queue, double minDist) const override;
    void filterCandidates(std::set<uint32_t> &cands, V vector, NodeQueue &queue, double minDist, const BitVector &skipDocIds) const override;

    Node *split(AnnoyLikeNns &meta);
    virtual void stats(std::vector<uint32_t> &depths) override { depths.push_back(1); }
};

struct SplitNode : public Node {
    std::vector<float> hyperPlane;
    double offsetFromOrigo;
    Node *leftChildren;
    Node *rightChildren;

    SplitNode() : Node(), hyperPlane(), offsetFromOrigo(), leftChildren(), rightChildren() {}
    ~SplitNode();

    Node *addDoc(uint32_t docid, V vector, AnnoyLikeNns &meta) override;
    int remove(uint32_t docid, V vector) override;
    void findCandidates(std::set<uint32_t> &cands, V vector, NodeQueue &queue, double minDist) const override;
    void filterCandidates(std::set<uint32_t> &cands, V vector, NodeQueue &queue, double minDist, const BitVector &skipDocIds) const override;

    double planeDistance(V vector) const;
    virtual void stats(std::vector<uint32_t> &depths) override {
        size_t i = depths.size();
        leftChildren->stats(depths);
        rightChildren->stats(depths);
        while (i < depths.size()) { ++depths[i++]; }
    }
};

class AnnoyLikeNns : public NNS<float>
{
private:
    std::vector<Node *> _roots;
    RndGen _rndGen;
    static constexpr size_t numRoots = 50;

public:
    AnnoyLikeNns(uint32_t numDims, const DocVectorAccess<float> &dva)
        : NNS(numDims, dva), _roots(), _rndGen()
    {
        _roots.reserve(numRoots);
        for (size_t i = 0; i < numRoots; ++i) {
            _roots.push_back(new LeafNode());
        }
    }

    void dumpStats();

    ~AnnoyLikeNns() {
        dumpStats();
        for (Node *root : _roots) {
            delete root;
        }
    }

    void addDoc(uint32_t docid) override {
        V vector = _dva.get(docid);
        for (Node * &root : _roots) {
            root = root->addDoc(docid, vector, *this);
        }
    }

    void removeDoc(uint32_t docid) override {
        V vector = _dva.get(docid);
        for (Node * root : _roots) {
            root->remove(docid, vector);
        }
    }
    std::vector<NnsHit> topK(uint32_t k, Vector vector, uint32_t search_k) override;

    std::vector<NnsHit> topKfilter(uint32_t k, Vector vector, uint32_t search_k, const BitVector &bitvector) override;

    V getVector(uint32_t docid) const { return _dva.get(docid); }
    double uniformRnd() { return _rndGen.nextUniform(); } 
    uint32_t dims() const { return _numDims; }
};


double
SplitNode::planeDistance(V vector) const
{
    ++plane_dist_cnt;
    assert(vector.size() == hyperPlane.size());
    double dp = l2distCalc.product(&vector[0], &hyperPlane[0], vector.size());
    return dp - offsetFromOrigo;
}


Node *
LeafNode::addDoc(uint32_t docid, V, AnnoyLikeNns &meta)
{
    docids.push_back(docid);
    if (docids.size() > 127) {
        return split(meta);
    }
    return this;
}

struct WeightedCentroid {
    uint32_t cnt;
    std::vector<float> sum_point;
    std::vector<float> tmp_vector;
    WeightedCentroid(V vector)
        : cnt(1), sum_point(), tmp_vector(vector.size())
    {
        sum_point.reserve(vector.size());
        for (float val : vector) {
            sum_point.push_back(val);
        }
    }
    void add_v(V vector) {
        ++cnt;
        for (size_t i = 0; i < vector.size(); ++i) {
            sum_point[i] += vector[i];
        }
    }
    std::vector<float> norm_diff(WeightedCentroid other) {
        std::vector<float> r;
        const size_t sz = sum_point.size();
        double my_inv = 1.0 / cnt;
        double ot_inv = 1.0 / other.cnt;
        double sumSq = 0.0;
        r.reserve(sz);
        for (size_t i = 0; i < sz; ++i) {
            double d = (sum_point[i] * my_inv) - (other.sum_point[i] * ot_inv);
            r.push_back(d);
            sumSq += d*d;
        }
        if (sumSq > 0) {
            double invnorm = 1.0 / sqrt(sumSq);
            for (size_t i = 0; i < sz; ++i) {
                r[i] *= invnorm;
            }
        }
        return r;
    }
    std::vector<float> midpoint(WeightedCentroid other) {
        std::vector<float> r;
        size_t sz = sum_point.size();
        r.reserve(sz);
        double my_inv = 1.0 / cnt;
        double ot_inv = 1.0 / other.cnt;
        for (size_t i = 0; i < sz; ++i) {
            double mp = (sum_point[i] * my_inv) + (other.sum_point[i] * ot_inv);
            r.push_back(mp * 0.5);
        }
        return r;
    }
    double weightedDistance(V vector) {
        ++w_cen_dist_cnt;
        size_t sz = vector.size();
        for (size_t i = 0; i < sz; ++i) {
            tmp_vector[i] = vector[i] * cnt;
        }
        return l2distCalc.l2sq_dist(tmp_vector, sum_point) / cnt;
    }
    ~WeightedCentroid() {}
};

Node *
LeafNode::split(AnnoyLikeNns &meta)
{
    ++leaf_split_cnt;
    uint32_t dims = meta.dims();
    uint32_t retries = 3;
retry:
    uint32_t p1i = uint32_t(meta.uniformRnd() * docids.size());
    uint32_t p2i = uint32_t(meta.uniformRnd() * (docids.size()-1));
    if (p2i >= p1i) ++p2i;
    uint32_t p1d = docids[p1i];
    uint32_t p2d = docids[p2i];
    V p1 = meta.getVector(p1d);
    V p2 = meta.getVector(p2d);

    double sumsq = 0;
    for (size_t i = 0; i < dims; ++i) {
        double d = p1[i] - p2[i];
        sumsq += d*d;
    }
    if ((!(sumsq > 0)) && (retries-- > 0)) {
        goto retry;
    }
    WeightedCentroid centroid1(p1);
    WeightedCentroid centroid2(p2);
#if 1
    for (size_t i = 0; (i * 1) < docids.size(); ++i) {
        size_t p3i = (p1i + p2i + i) % docids.size();
        uint32_t p3d = docids[p3i];
        V p3 = meta.getVector(p3d);
        double dist_c1 = centroid1.weightedDistance(p3);
        double dist_c2 = centroid2.weightedDistance(p3);
        bool use_c1 = false;
        if (dist_c1 < dist_c2) {
            use_c1 = true;
        } else if (dist_c1 > dist_c2) {
            use_c1 = false;
        } else if (centroid1.cnt < centroid2.cnt) {
            use_c1 = true;
        }
        if (use_c1) {
            centroid1.add_v(p3);
        } else {
            centroid2.add_v(p3);
        }
    }
#endif
    std::vector<float> diff = centroid1.norm_diff(centroid2);
    std::vector<float> mp = centroid1.midpoint(centroid2);
    double off = l2distCalc.product(diff, mp);

    SplitNode *s = new SplitNode();
    s->hyperPlane = std::move(diff);
    s->offsetFromOrigo = off;

    std::vector<uint32_t> leftDs;
    std::vector<uint32_t> rightDs;
    leftDs.reserve(128);
    rightDs.reserve(128);

    for (uint32_t docid : docids) {
        V vector = meta.getVector(docid);
        double dist = s->planeDistance(vector);
        bool left = false;
        if (dist < 0) {
            left = true;
        } else if (!(dist > 0)) {
            left = (leftDs.size() < rightDs.size());
        }
        if (left) {
            leftDs.push_back(docid);
        } else {
            rightDs.push_back(docid);
        }
    }

#if 0
    fprintf(stderr, "splitting leaf node numChildren %u\n", numChildren);
    fprintf(stderr, "dims = %u\n", dims);
    fprintf(stderr, "p1 idx=%u, docid=%u VSZ=%zu\n", p1i, p1d, p1.size());
    fprintf(stderr, "p2 idx=%u, docid=%u VSZ=%zu\n", p2i, p2d, p2.size());
    fprintf(stderr, "diff %zu sumsq = %g\n", diff.size(), sumsq);
    fprintf(stderr, "offset from origo = %g\n", off);
    fprintf(stderr, "split left=%zu, right=%zu\n", leftDs.size(), rightDs.size());
#endif

    LeafNode *newRightNode = new LeafNode();
    newRightNode->docids = std::move(rightDs);
    s->rightChildren = newRightNode;
    this->docids = std::move(leftDs);
    s->leftChildren = this;
    return s;
}

int
LeafNode::remove(uint32_t docid, V)
{
    auto iter = std::remove(docids.begin(), docids.end(), docid);
    int removed = docids.end() - iter;
    docids.erase(iter, docids.end());
    return removed;
}

void
LeafNode::findCandidates(std::set<uint32_t> &cands, V, NodeQueue &, double) const
{
    for (uint32_t d : docids) {
        cands.insert(d);
    }
}

void
LeafNode::filterCandidates(std::set<uint32_t> &cands, V, NodeQueue &, double, const BitVector &skipDocIds) const
{
    for (uint32_t d : docids) {
        if (skipDocIds.isSet(d)) continue;
        cands.insert(d);
    }
}


SplitNode::~SplitNode()
{
    delete leftChildren;
    delete rightChildren;
}

Node *
SplitNode::addDoc(uint32_t docid, V vector, AnnoyLikeNns &meta)
{
    double d = planeDistance(vector);
    if (d < 0) {
        leftChildren = leftChildren->addDoc(docid, vector, meta);
    } else {
        rightChildren = rightChildren->addDoc(docid, vector, meta);
    }
    return this;
}

int
SplitNode::remove(uint32_t docid, V vector)
{
    double d = planeDistance(vector);
    if (d < 0) {
        int r = leftChildren->remove(docid, vector);
        return r;
    } else {
        int r = rightChildren->remove(docid, vector);
        return r;
    }
}

void
SplitNode::findCandidates(std::set<uint32_t> &, V vector, NodeQueue &queue, double minDist) const
{
    double d = planeDistance(vector);
    // fprintf(stderr, "push 2 nodes dist %g\n", d);
    queue.push(std::make_pair(std::min(-d, minDist), leftChildren));
    queue.push(std::make_pair(std::min(d, minDist), rightChildren));
}

void
SplitNode::filterCandidates(std::set<uint32_t> &, V vector, NodeQueue &queue, double minDist, const BitVector &) const
{
    double d = planeDistance(vector);
    // fprintf(stderr, "push 2 nodes dist %g\n", d);
    queue.push(std::make_pair(std::min(-d, minDist), leftChildren));
    queue.push(std::make_pair(std::min(d, minDist), rightChildren));
}

std::vector<NnsHit>
AnnoyLikeNns::topK(uint32_t k, Vector vector, uint32_t search_k)
{
    ++find_top_k_cnt;
    std::vector<float> tmp;
    tmp.resize(_numDims);
    vespalib::ArrayRef<float> tmpArr(tmp);

    std::vector<NnsHit> r;
    r.reserve(k);
    std::set<uint32_t> candidates;
    NodeQueue queue;
    // fprintf(stderr, "find %u candidates\n", k);
    for (Node *root : _roots) {
        double dist = std::numeric_limits<double>::max();
        queue.push(std::make_pair(dist, root));
    }
    while ((candidates.size() < std::max(k, search_k)) && (queue.size() > 0)) {
        const QueueNode& top = queue.top();
        double md = top.first;
        // fprintf(stderr, "find candidates: node with min distance %g\n", md);
        Node *n = top.second;
        queue.pop();
        n->findCandidates(candidates, vector, queue, md);
        ++find_cand_cnt;
    }
#if 0
    while (queue.size() > 0) {
        const QueueNode& top = queue.top();
        fprintf(stderr, "discard candidates: node with distance %g\n", top.first);
        queue.pop();
    }
#endif
    for (uint32_t docid : candidates) {
        double dist = l2distCalc.l2sq_dist(vector, _dva.get(docid), tmpArr);
        NnsHit hit(docid, SqDist(dist));
        r.push_back(hit);
    }
    std::sort(r.begin(), r.end(), NnsHitComparatorLessDistance());
    while (r.size() > k) r.pop_back();
    return r;
}

std::vector<NnsHit>
AnnoyLikeNns::topKfilter(uint32_t k, Vector vector, uint32_t search_k, const BitVector &skipDocIds)
{
    ++find_top_k_cnt;
    std::vector<NnsHit> r;
    r.reserve(k);
    std::set<uint32_t> candidates;
    NodeQueue queue;
    for (Node *root : _roots) {
        double dist = std::numeric_limits<double>::max();
        queue.push(std::make_pair(dist, root));
    }
    while ((candidates.size() < std::max(k, search_k)) && (queue.size() > 0)) {
        const QueueNode& top = queue.top();
        double md = top.first;
        // fprintf(stderr, "find candidates: node with min distance %g\n", md);
        Node *n = top.second;
        queue.pop();
        n->filterCandidates(candidates, vector, queue, md, skipDocIds);
        ++find_cand_cnt;
    }
    for (uint32_t docid : candidates) {
        if (skipDocIds.isSet(docid)) continue;
        double dist = l2distCalc.l2sq_dist(vector, _dva.get(docid));
        NnsHit hit(docid, SqDist(dist));
        r.push_back(hit);
    }
    std::sort(r.begin(), r.end(), NnsHitComparatorLessDistance());
    while (r.size() > k) r.pop_back();
    return r;
}



void
AnnoyLikeNns::dumpStats() {
    fprintf(stderr, "stats for AnnoyLikeNns:\n");
    fprintf(stderr, "planeDistance() calls: %zu\n", plane_dist_cnt);
    fprintf(stderr, "weightedDistance() calls: %zu\n", w_cen_dist_cnt);
    fprintf(stderr, "leaf split() calls: %zu\n", leaf_split_cnt);
    fprintf(stderr, "topK() calls: %zu\n", find_top_k_cnt);
    fprintf(stderr, "findCandidates() calls: %zu\n", find_cand_cnt);
    std::vector<uint32_t> depths;
    _roots[0]->stats(depths);
    std::vector<uint32_t> counts;
    for (uint32_t deep : depths) {
        while (counts.size() <= deep) counts.push_back(0);
        counts[deep]++;
    }
    fprintf(stderr, "depths for %zu leaves [\n", depths.size());
    for (uint32_t deep = 0; deep < counts.size(); ++deep) {
        if (counts[deep] > 0) {
            fprintf(stderr, "%u deep count %u\n", deep, counts[deep]);
        }
    }
    fprintf(stderr, "]\n");
}

std::unique_ptr<NNS<float>>
make_annoy_nns(uint32_t numDims, const DocVectorAccess<float> &dva)
{
    return std::make_unique<AnnoyLikeNns>(numDims, dva);
}