summaryrefslogtreecommitdiffstats
path: root/eval/src/tests/eval/interpreted_function/interpreted_function_test.cpp
blob: f0306e99a910e1da1c9959c4a0f07744f669b77c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright 2017 Yahoo Holdings. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
#include <vespa/vespalib/testkit/test_kit.h>
#include <vespa/eval/eval/function.h>
#include <vespa/eval/eval/tensor_spec.h>
#include <vespa/eval/eval/operation.h>
#include <vespa/eval/eval/interpreted_function.h>
#include <vespa/eval/eval/test/eval_spec.h>
#include <vespa/eval/eval/basic_nodes.h>
#include <vespa/eval/eval/simple_tensor_engine.h>
#include <vespa/eval/tensor/default_tensor_engine.h>
#include <vespa/vespalib/util/stringfmt.h>
#include <vespa/vespalib/util/stash.h>
#include <vespa/vespalib/test/insertion_operators.h>
#include <iostream>

using namespace vespalib::eval;
using vespalib::Stash;
using vespalib::tensor::DefaultTensorEngine;

//-----------------------------------------------------------------------------

struct MyEvalTest : test::EvalSpec::EvalTest {
    size_t pass_cnt = 0;
    size_t fail_cnt = 0;
    bool print_pass = false;
    bool print_fail = false;

    virtual void next_expression(const std::vector<vespalib::string> &param_names,
                                 const vespalib::string &expression) override
    {
        Function function = Function::parse(param_names, expression);
        ASSERT_TRUE(!function.has_error());
        bool is_supported = true;
        bool has_issues = InterpretedFunction::detect_issues(function);
        if (is_supported == has_issues) {
            const char *supported_str = is_supported ? "supported" : "not supported";
            const char *issues_str = has_issues ? "has issues" : "does not have issues";
            print_fail && fprintf(stderr, "expression %s is %s, but %s\n",
                                  expression.c_str(), supported_str, issues_str);
            ++fail_cnt;
        }
    }

    virtual void handle_case(const std::vector<vespalib::string> &param_names,
                             const std::vector<double> &param_values,
                             const vespalib::string &expression,
                             double expected_result) override
    {
        Function function = Function::parse(param_names, expression);
        ASSERT_TRUE(!function.has_error());
        bool is_supported = true;
        bool has_issues = InterpretedFunction::detect_issues(function);
        if (is_supported && !has_issues) {
            vespalib::string desc = as_string(param_names, param_values, expression);
            SimpleParams params(param_values);
            verify_result(SimpleTensorEngine::ref(), function, false,    "[untyped simple] "+desc, params, expected_result);
            verify_result(DefaultTensorEngine::ref(), function, false,   "[untyped prod]   "+desc, params, expected_result);
            verify_result(DefaultTensorEngine::ref(), function, true,    "[typed prod]     "+desc, params, expected_result);
            verify_tensor_function(DefaultTensorEngine::ref(), function, "[tensor function]"+desc, params, expected_result);
        }
    }

    void report_result(bool is_double, double result, double expect, const vespalib::string &desc)
    {
        if (is_double && is_same(expect, result)) {
            print_pass && fprintf(stderr, "verifying: %s -> %g ... PASS\n",
                                  desc.c_str(), expect);
            ++pass_cnt;
        } else {
            print_fail && fprintf(stderr, "verifying: %s -> %g ... FAIL: got %g\n",
                                  desc.c_str(), expect, result);
            ++fail_cnt;
        }
    }

    void verify_result(const TensorEngine &engine,
                       const Function &function,
                       bool typed,
                       const vespalib::string &description,
                       const SimpleParams &params,
                       double expected_result)
    {
        NodeTypes node_types = typed
                               ? NodeTypes(function, std::vector<ValueType>(params.params.size(), ValueType::double_type()))
                               : NodeTypes();
        InterpretedFunction ifun(engine, function, node_types);
        ASSERT_EQUAL(ifun.num_params(), params.params.size());
        InterpretedFunction::Context ictx(ifun);
        const Value &result_value = ifun.eval(ictx, params);
        report_result(result_value.is_double(), result_value.as_double(), expected_result, description);
    }

    void verify_tensor_function(const TensorEngine &engine,
                                const Function &function,
                                const vespalib::string &description,
                                const SimpleParams &params,
                                double expected_result)
    {
        Stash stash;
        NodeTypes node_types = NodeTypes(function, std::vector<ValueType>(params.params.size(), ValueType::double_type()));
        const auto &tfun = make_tensor_function(engine, function.root(), node_types, stash);
        const Value &result_value = tfun.eval(engine, params, stash);
        report_result(result_value.is_double(), result_value.as_double(), expected_result, description);
    }
};

TEST_FF("require that compiled evaluation passes all conformance tests", MyEvalTest(), test::EvalSpec()) {
    f1.print_fail = true;
    f2.add_all_cases();
    f2.each_case(f1);
    EXPECT_GREATER(f1.pass_cnt, 1000u);
    EXPECT_EQUAL(0u, f1.fail_cnt);
}

//-----------------------------------------------------------------------------

TEST("require that invalid function evaluates to a error") {
    std::vector<vespalib::string> params({"x", "y", "z", "w"});
    Function function = Function::parse(params, "x & y");
    EXPECT_TRUE(function.has_error());
    InterpretedFunction ifun(SimpleTensorEngine::ref(), function, NodeTypes());
    InterpretedFunction::Context ctx(ifun);
    SimpleParams my_params({1,2,3,4});
    const Value &result = ifun.eval(ctx, my_params);
    EXPECT_TRUE(result.is_error());
    EXPECT_EQUAL(error_value, result.as_double());
}

//-----------------------------------------------------------------------------

size_t count_ifs(const vespalib::string &expr, std::initializer_list<double> params_in) {
    Function fun = Function::parse(expr);
    InterpretedFunction ifun(SimpleTensorEngine::ref(), fun, NodeTypes());
    InterpretedFunction::Context ctx(ifun);
    SimpleParams params(params_in);
    ifun.eval(ctx, params);
    return ctx.if_cnt();
}

TEST("require that if_cnt in eval context is updated correctly") {
    EXPECT_EQUAL(0u, count_ifs("1", {}));
    EXPECT_EQUAL(1u, count_ifs("if(a<10,if(a<9,if(a<8,if(a<7,5,4),3),2),1)", {10}));
    EXPECT_EQUAL(2u, count_ifs("if(a<10,if(a<9,if(a<8,if(a<7,5,4),3),2),1)", {9}));
    EXPECT_EQUAL(3u, count_ifs("if(a<10,if(a<9,if(a<8,if(a<7,5,4),3),2),1)", {8}));
    EXPECT_EQUAL(4u, count_ifs("if(a<10,if(a<9,if(a<8,if(a<7,5,4),3),2),1)", {7}));
    EXPECT_EQUAL(4u, count_ifs("if(a<10,if(a<9,if(a<8,if(a<7,5,4),3),2),1)", {6}));
}

//-----------------------------------------------------------------------------

TEST("require that interpreted function instructions have expected size") {
    EXPECT_EQUAL(sizeof(InterpretedFunction::Instruction), 16u);
}

TEST("require that function pointers can be passed as instruction parameters") {
    EXPECT_EQUAL(sizeof(&operation::Add::f), sizeof(uint64_t));
}

TEST("require that basic addition works") {
    Function function = Function::parse("a+10");
    InterpretedFunction interpreted(SimpleTensorEngine::ref(), function, NodeTypes());
    InterpretedFunction::Context ctx(interpreted);
    SimpleParams params_20({20});
    SimpleParams params_40({40});
    EXPECT_EQUAL(interpreted.eval(ctx, params_20).as_double(), 30.0);
    EXPECT_EQUAL(interpreted.eval(ctx, params_40).as_double(), 50.0);
}

//-----------------------------------------------------------------------------

struct InnerProduct {
    const TensorEngine &engine;
    Function            function;
    TensorSpec          a;
    TensorSpec          b;
    TensorSpec          expect;
    NodeTypes           types;
    InterpretedFunction interpreted;
    ~InnerProduct() {}
    InnerProduct(const vespalib::string &expr)
        : engine(DefaultTensorEngine::ref()),
          function(Function::parse({"a", "b"}, expr)),
          a("null"), b("null"), expect("null"),
          types(),
          interpreted(engine, function, types) {}
    InnerProduct(const vespalib::string &expr,
              TensorSpec a_in,
              TensorSpec b_in,
              TensorSpec expect_in)
        : engine(DefaultTensorEngine::ref()),
          function(Function::parse(expr)),
          a(a_in), b(b_in), expect(expect_in),
          types(function, {ValueType::from_spec(a.type()), ValueType::from_spec(b.type())}),
          interpreted(engine, function, types) {}
    void verify_optimized() const {
        EXPECT_EQUAL(1u, interpreted.program_size());
        InterpretedFunction::Context ctx(interpreted);
        Value::UP va = engine.from_spec(a);
        Value::UP vb = engine.from_spec(b);
        SimpleObjectParams params({*va,*vb});
        const Value &result = interpreted.eval(ctx, params);
        EXPECT_EQUAL(engine.to_spec(result), expect);
    }
    void verify_not_optimized() const {
        EXPECT_EQUAL(4u, interpreted.program_size());
    }
};

struct UntypedIP : InnerProduct {
    UntypedIP(const vespalib::string &expr) : InnerProduct(expr) {
        a = TensorSpec("double").add({}, 2.0);
        b = TensorSpec("double").add({}, 3.0);
        expect = TensorSpec("double").add({}, 6.0);
    }
};

struct DotProduct : InnerProduct {
    DotProduct(const vespalib::string &expr)
        : InnerProduct(expr,
                       TensorSpec("tensor(x[3])")
                       .add({{"x", 0}}, 5.0)
                       .add({{"x", 1}}, 3.0)
                       .add({{"x", 2}}, 2.0),
                       TensorSpec("tensor(x[3])")
                       .add({{"x", 0}}, 7.0)
                       .add({{"x", 1}}, 11.0)
                       .add({{"x", 2}}, 13.0),
                       TensorSpec("double")
                       .add({}, (5.0 * 7.0) + (3.0 * 11.0) + (2.0 * 13.0))) {}
};

struct XW : InnerProduct {
    XW(const vespalib::string &expr)
        : InnerProduct(expr,
                       TensorSpec("tensor(x[2])")
                       .add({{"x", 0}},  1.0)
                       .add({{"x", 1}},  2.0),
                       TensorSpec("tensor(x[2],y[3])")
                       .add({{"y", 0},{"x", 0}},  3.0)
                       .add({{"y", 0},{"x", 1}},  5.0)
                       .add({{"y", 1},{"x", 0}},  7.0)
                       .add({{"y", 1},{"x", 1}}, 11.0)
                       .add({{"y", 2},{"x", 0}}, 13.0)
                       .add({{"y", 2},{"x", 1}}, 17.0),
                       TensorSpec("tensor(y[3])")
                       .add({{"y", 0}}, (1.0 *  3.0) + (2.0 *  5.0))
                       .add({{"y", 1}}, (1.0 *  7.0) + (2.0 * 11.0))
                       .add({{"y", 2}}, (1.0 * 13.0) + (2.0 * 17.0))) {}
};

struct MatMul : InnerProduct {
    MatMul(const vespalib::string &expr)
        : InnerProduct(expr,
                       TensorSpec("tensor(x[2],y[2])")
                       .add({{"x", 0},{"y", 0}},  1.0)
                       .add({{"x", 0},{"y", 1}},  2.0)
                       .add({{"x", 1},{"y", 0}},  3.0)
                       .add({{"x", 1},{"y", 1}},  5.0),
                       TensorSpec("tensor(y[2],z[2])")
                       .add({{"y", 0},{"z", 0}},  7.0)
                       .add({{"y", 0},{"z", 1}}, 11.0)
                       .add({{"y", 1},{"z", 0}}, 13.0)
                       .add({{"y", 1},{"z", 1}}, 17.0),
                       TensorSpec("tensor(x[2],z[2])")
                       .add({{"x", 0},{"z", 0}}, (1.0 *  7.0) + (2.0 * 13.0))
                       .add({{"x", 0},{"z", 1}}, (1.0 * 11.0) + (2.0 * 17.0))
                       .add({{"x", 1},{"z", 0}}, (3.0 *  7.0) + (5.0 * 13.0))
                       .add({{"x", 1},{"z", 1}}, (3.0 * 11.0) + (5.0 * 17.0))) {}
};

TEST("require that inner product is not optimized for unknown types") {
    TEST_DO(UntypedIP("reduce(a*b,sum)").verify_not_optimized());
    TEST_DO(UntypedIP("reduce(join(a,b,f(x,y)(x*y)),sum)").verify_not_optimized());
}

TEST("require that dot product works with tensor function") {
    TEST_DO(DotProduct("reduce(a*b,sum)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(x*y)),sum)").verify_optimized());
    TEST_DO(DotProduct("reduce(b*a,sum)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(b,a,f(x,y)(x*y)),sum)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(y*x)),sum)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(b,a,f(x,y)(y*x)),sum)").verify_optimized());
    TEST_DO(DotProduct("reduce(a*b,sum,x)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(x*y)),sum,x)").verify_optimized());
    TEST_DO(DotProduct("reduce(b*a,sum,x)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(b,a,f(x,y)(x*y)),sum,x)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(y*x)),sum,x)").verify_optimized());
    TEST_DO(DotProduct("reduce(join(b,a,f(x,y)(y*x)),sum,x)").verify_optimized());
}

TEST("require that vector matrix multiplication works with tensor function") {
    TEST_DO(XW("reduce(a*b,sum,x)").verify_optimized());
    TEST_DO(XW("reduce(join(a,b,f(x,y)(x*y)),sum,x)").verify_optimized());
    TEST_DO(XW("reduce(b*a,sum,x)").verify_optimized());
    TEST_DO(XW("reduce(join(b,a,f(x,y)(x*y)),sum,x)").verify_optimized());
    TEST_DO(XW("reduce(join(a,b,f(x,y)(y*x)),sum,x)").verify_optimized());
    TEST_DO(XW("reduce(join(b,a,f(x,y)(y*x)),sum,x)").verify_optimized());
}

TEST("require that matrix multiplication is not optimized (yet)") {
    TEST_DO(MatMul("reduce(a*b,sum,y)").verify_not_optimized());
    TEST_DO(MatMul("reduce(join(a,b,f(x,y)(x*y)),sum,y)").verify_not_optimized());
    TEST_DO(MatMul("reduce(b*a,sum,y)").verify_not_optimized());
    TEST_DO(MatMul("reduce(join(b,a,f(x,y)(x*y)),sum,y)").verify_not_optimized());
    TEST_DO(MatMul("reduce(join(a,b,f(x,y)(y*x)),sum,y)").verify_not_optimized());
    TEST_DO(MatMul("reduce(join(b,a,f(x,y)(y*x)),sum,y)").verify_not_optimized());
}

TEST("require that expressions similar to inner product are not optimized") {
    TEST_DO(DotProduct("reduce(a*b,prod)").verify_not_optimized());
    TEST_DO(DotProduct("reduce(a*b,max)").verify_not_optimized());
    TEST_DO(DotProduct("reduce(a+b,sum)").verify_not_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(x+y)),sum)").verify_not_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(x*x)),sum)").verify_not_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(y*y)),sum)").verify_not_optimized());
    TEST_DO(DotProduct("reduce(join(a,b,f(x,y)(x*y*1)),sum)").verify_not_optimized());
}

//-----------------------------------------------------------------------------

TEST("require that functions with non-compilable lambdas cannot be interpreted") {
    auto good_map = Function::parse("map(a,f(x)(x+1))");
    auto good_join = Function::parse("join(a,b,f(x,y)(x+y))");
    auto good_tensor = Function::parse("tensor(a[10],b[10])(a+b)");
    auto bad_map = Function::parse("map(a,f(x)(map(x,f(i)(i+1))))");
    auto bad_join = Function::parse("join(a,b,f(x,y)(join(x,y,f(i,j)(i+j))))");
    auto bad_tensor = Function::parse("tensor(a[10],b[10])(join(a,b,f(i,j)(i+j)))");
    for (const Function *good: {&good_map, &good_join, &good_tensor}) {
        if (!EXPECT_TRUE(!good->has_error())) {
            fprintf(stderr, "parse error: %s\n", good->get_error().c_str());
        }
        EXPECT_TRUE(!InterpretedFunction::detect_issues(*good));
    }
    for (const Function *bad: {&bad_map, &bad_join, &bad_tensor}) {
        if (!EXPECT_TRUE(!bad->has_error())) {
            fprintf(stderr, "parse error: %s\n", bad->get_error().c_str());
        }
        EXPECT_TRUE(InterpretedFunction::detect_issues(*bad));
    }
    std::cerr << "Example function issues:" << std::endl
              << InterpretedFunction::detect_issues(bad_tensor).list
              << std::endl;
}

//-----------------------------------------------------------------------------

TEST_MAIN() { TEST_RUN_ALL(); }