summaryrefslogtreecommitdiffstats
path: root/eval/src/tests/eval/node_types/node_types_test.cpp
blob: 8eaa7a80a81b3d2ddea32d0b6e94e2f8c40d3063 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2017 Yahoo Holdings. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
#include <vespa/vespalib/testkit/test_kit.h>
#include <vespa/eval/eval/function.h>
#include <vespa/eval/eval/value_type.h>
#include <vespa/eval/eval/value_type_spec.h>
#include <vespa/eval/eval/node_types.h>

using namespace vespalib::eval;

struct TypeSpecExtractor : public vespalib::eval::SymbolExtractor {
    void extract_symbol(const char *pos_in, const char *end_in,
                        const char *&pos_out, vespalib::string &symbol_out) const override
    {
        ValueType type = value_type::parse_spec(pos_in, end_in, pos_out);
        if (pos_out != nullptr) {
            symbol_out = type.to_spec();
        }
    }
};

void verify(const vespalib::string &type_expr, const vespalib::string &type_spec) {
    auto function = Function::parse(type_expr, TypeSpecExtractor());
    if (!EXPECT_TRUE(!function->has_error())) {
        fprintf(stderr, "parse error: %s\n", function->get_error().c_str());
        return;
    }
    std::vector<ValueType> input_types;
    for (size_t i = 0; i < function->num_params(); ++i) {
        input_types.push_back(ValueType::from_spec(function->param_name(i)));
    }
    NodeTypes types(*function, input_types);
    if (!types.errors().empty()) {
        for (const auto &msg: types.errors()) {
            fprintf(stderr, "type error: %s\n", msg.c_str());
        }
    }
    ValueType expected_type = ValueType::from_spec(type_spec);
    ValueType actual_type = types.get_type(function->root());
    EXPECT_EQUAL(expected_type, actual_type);
}

TEST("require that error nodes have error type") {
    auto function = Function::parse("1 2 3 4 5", TypeSpecExtractor());
    EXPECT_TRUE(function->has_error());
    NodeTypes types(*function, std::vector<ValueType>());
    ValueType expected_type = ValueType::from_spec("error");
    ValueType actual_type = types.get_type(function->root());
    EXPECT_EQUAL(expected_type, actual_type);
}

TEST("require that leaf constants have appropriate type") {
    TEST_DO(verify("123", "double"));
    TEST_DO(verify("\"string values are hashed\"", "double"));
}

TEST("require that input parameters preserve their type") {
    TEST_DO(verify("error", "error"));
    TEST_DO(verify("double", "double"));
    TEST_DO(verify("tensor()", "double"));
    TEST_DO(verify("tensor(x{},y[10],z[5])", "tensor(x{},y[10],z[5])"));
    TEST_DO(verify("tensor<float>(x{},y[10],z[5])", "tensor<float>(x{},y[10],z[5])"));
}

TEST("require that if resolves to the appropriate type") {
    TEST_DO(verify("if(error,1,2)", "error"));
    TEST_DO(verify("if(1,error,2)", "error"));
    TEST_DO(verify("if(1,2,error)", "error"));
    TEST_DO(verify("if(double,1,2)", "double"));
    TEST_DO(verify("if(tensor(x[10]),1,2)", "double"));
    TEST_DO(verify("if(double,tensor(a{}),tensor(a{}))", "tensor(a{})"));
    TEST_DO(verify("if(double,tensor(a[2]),tensor(a[2]))", "tensor(a[2])"));
    TEST_DO(verify("if(double,tensor<float>(a[2]),tensor<float>(a[2]))", "tensor<float>(a[2])"));
    TEST_DO(verify("if(double,tensor(a[2]),tensor<float>(a[2]))", "error"));
    TEST_DO(verify("if(double,tensor(a[2]),tensor(a[3]))", "error"));
    TEST_DO(verify("if(double,tensor(a[2]),tensor(a{}))", "error"));
    TEST_DO(verify("if(double,tensor(a{}),tensor(b{}))", "error"));
    TEST_DO(verify("if(double,tensor(a{}),double)", "error"));
}

TEST("require that reduce resolves correct type") {
    TEST_DO(verify("reduce(error,sum)", "error"));
    TEST_DO(verify("reduce(tensor(x{}),sum)", "double"));
    TEST_DO(verify("reduce(double,sum)", "double"));
    TEST_DO(verify("reduce(error,sum,x)", "error"));
    TEST_DO(verify("reduce(double,sum,x)", "error"));
    TEST_DO(verify("reduce(tensor(x{},y{},z{}),sum,y)", "tensor(x{},z{})"));
    TEST_DO(verify("reduce(tensor(x{},y{},z{}),sum,x,z)", "tensor(y{})"));
    TEST_DO(verify("reduce(tensor(x{},y{},z{}),sum,y,z,x)", "double"));
    TEST_DO(verify("reduce(tensor(x{},y{},z{}),sum,w)", "error"));
    TEST_DO(verify("reduce(tensor(x{},y{},z{}),sum,a,b,c)", "error"));
    TEST_DO(verify("reduce(tensor(x{}),sum,x)", "double"));
    TEST_DO(verify("reduce(tensor<float>(x{},y{},z{}),sum,x,z)", "tensor<float>(y{})"));
    TEST_DO(verify("reduce(tensor<float>(x{}),sum,x)", "double"));
    TEST_DO(verify("reduce(tensor<float>(x{}),sum)", "double"));
}

TEST("require that rename resolves correct type") {
    TEST_DO(verify("rename(error,x,y)", "error"));
    TEST_DO(verify("rename(double,x,y)", "error"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),a,b)", "error"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),x,y)", "error"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),x,x)", "tensor(x{},y[1],z[5])"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),x,w)", "tensor(w{},y[1],z[5])"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),y,w)", "tensor(x{},w[1],z[5])"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),z,w)", "tensor(x{},y[1],w[5])"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),(x,y,z),(z,y,x))", "tensor(z{},y[1],x[5])"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),(x,z),(z,x))", "tensor(z{},y[1],x[5])"));
    TEST_DO(verify("rename(tensor(x{},y[1],z[5]),(x,y,z),(a,b,c))", "tensor(a{},b[1],c[5])"));
    TEST_DO(verify("rename(tensor<float>(x{},y[1],z[5]),(x,y,z),(a,b,c))", "tensor<float>(a{},b[1],c[5])"));
}

vespalib::string strfmt(const char *pattern, const char *a) {
    return vespalib::make_string(pattern, a);
}

vespalib::string strfmt(const char *pattern, const char *a, const char *b) {
    return vespalib::make_string(pattern, a, b);
}

void verify_op1(const char *pattern) {
    TEST_DO(verify(strfmt(pattern, "error"), "error"));
    TEST_DO(verify(strfmt(pattern, "double"), "double"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{},y[10],z[1])"), "tensor(x{},y[10],z[1])"));
    TEST_DO(verify(strfmt(pattern, "tensor<float>(x{},y[10],z[1])"), "tensor<float>(x{},y[10],z[1])"));
}

void verify_op2(const char *pattern) {
    TEST_DO(verify(strfmt(pattern, "error", "error"), "error"));
    TEST_DO(verify(strfmt(pattern, "double", "error"), "error"));
    TEST_DO(verify(strfmt(pattern, "error", "double"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "error"), "error"));
    TEST_DO(verify(strfmt(pattern, "error", "tensor(x{})"), "error"));
    TEST_DO(verify(strfmt(pattern, "double", "double"), "double"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "double"), "tensor(x{})"));
    TEST_DO(verify(strfmt(pattern, "double", "tensor(x{})"), "tensor(x{})"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "tensor(x{})"), "tensor(x{})"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "tensor(y{})"), "tensor(x{},y{})"));
    TEST_DO(verify(strfmt(pattern, "tensor(x[5])", "tensor(x[5])"), "tensor(x[5])"));
    TEST_DO(verify(strfmt(pattern, "tensor(x[3])", "tensor(x[5])"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x[5])", "tensor(x[3])"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "tensor(x[5])"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor<float>(x[5])", "tensor<float>(x[5])"), "tensor<float>(x[5])"));
    TEST_DO(verify(strfmt(pattern, "tensor<float>(x[5])", "tensor(x[5])"), "tensor(x[5])"));
    TEST_DO(verify(strfmt(pattern, "tensor<float>(x[5])", "double"), "tensor<float>(x[5])"));
}

TEST("require that various operations resolve appropriate type") {
    TEST_DO(verify_op1("-%s"));          // Neg
    TEST_DO(verify_op1("!%s"));          // Not
    TEST_DO(verify_op2("%s+%s"));        // Add
    TEST_DO(verify_op2("%s-%s"));        // Sub
    TEST_DO(verify_op2("%s*%s"));        // Mul
    TEST_DO(verify_op2("%s/%s"));        // Div
    TEST_DO(verify_op2("%s^%s"));        // Pow
    TEST_DO(verify_op2("%s==%s"));       // Equal
    TEST_DO(verify_op2("%s!=%s"));       // NotEqual
    TEST_DO(verify_op2("%s~=%s"));       // Approx
    TEST_DO(verify_op2("%s<%s"));        // Less
    TEST_DO(verify_op2("%s<=%s"));       // LessEqual
    TEST_DO(verify_op2("%s>%s"));        // Greater
    TEST_DO(verify_op2("%s>=%s"));       // GreaterEqual
    TEST_DO(verify_op2("%s&&%s"));       // And
    TEST_DO(verify_op2("%s||%s"));       // Or
    TEST_DO(verify_op1("cos(%s)"));      // Cos
    TEST_DO(verify_op1("sin(%s)"));      // Sin
    TEST_DO(verify_op1("tan(%s)"));      // Tan
    TEST_DO(verify_op1("cosh(%s)"));     // Cosh
    TEST_DO(verify_op1("sinh(%s)"));     // Sinh
    TEST_DO(verify_op1("tanh(%s)"));     // Tanh
    TEST_DO(verify_op1("acos(%s)"));     // Acos
    TEST_DO(verify_op1("asin(%s)"));     // Asin
    TEST_DO(verify_op1("atan(%s)"));     // Atan
    TEST_DO(verify_op1("exp(%s)"));      // Exp
    TEST_DO(verify_op1("log10(%s)"));    // Log10
    TEST_DO(verify_op1("log(%s)"));      // Log
    TEST_DO(verify_op1("sqrt(%s)"));     // Sqrt
    TEST_DO(verify_op1("ceil(%s)"));     // Ceil
    TEST_DO(verify_op1("fabs(%s)"));     // Fabs
    TEST_DO(verify_op1("floor(%s)"));    // Floor
    TEST_DO(verify_op2("atan2(%s,%s)")); // Atan2
    TEST_DO(verify_op2("ldexp(%s,%s)")); // Ldexp
    TEST_DO(verify_op2("pow(%s,%s)"));   // Pow2
    TEST_DO(verify_op2("fmod(%s,%s)"));  // Fmod
    TEST_DO(verify_op2("min(%s,%s)"));   // min
    TEST_DO(verify_op2("max(%s,%s)"));   // max
    TEST_DO(verify_op1("isNan(%s)"));    // IsNan
    TEST_DO(verify_op1("relu(%s)"));     // Relu
    TEST_DO(verify_op1("sigmoid(%s)"));  // Sigmoid
    TEST_DO(verify_op1("elu(%s)"));      // Elu
}

TEST("require that map resolves correct type") {
    TEST_DO(verify_op1("map(%s,f(x)(sin(x)))"));
}

TEST("require that set membership resolves correct type") {
    TEST_DO(verify_op1("%s in [1,2,3]"));
}

TEST("require that join resolves correct type") {
    TEST_DO(verify_op2("join(%s,%s,f(x,y)(x+y))"));
}

TEST("require that merge resolves to the appropriate type") {
    const char *pattern = "merge(%s,%s,f(x,y)(x+y))";
    TEST_DO(verify(strfmt(pattern, "error", "error"), "error"));
    TEST_DO(verify(strfmt(pattern, "double", "error"), "error"));
    TEST_DO(verify(strfmt(pattern, "error", "double"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "error"), "error"));
    TEST_DO(verify(strfmt(pattern, "error", "tensor(x{})"), "error"));
    TEST_DO(verify(strfmt(pattern, "double", "double"), "double"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "double"), "error"));
    TEST_DO(verify(strfmt(pattern, "double", "tensor(x{})"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "tensor(x{})"), "tensor(x{})"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "tensor(y{})"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x[5])", "tensor(x[5])"), "tensor(x[5])"));
    TEST_DO(verify(strfmt(pattern, "tensor(x[3])", "tensor(x[5])"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x[5])", "tensor(x[3])"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor(x{})", "tensor(x[5])"), "error"));
    TEST_DO(verify(strfmt(pattern, "tensor<float>(x[5])", "tensor<float>(x[5])"), "tensor<float>(x[5])"));
    TEST_DO(verify(strfmt(pattern, "tensor<float>(x[5])", "tensor(x[5])"), "tensor(x[5])"));
    TEST_DO(verify(strfmt(pattern, "tensor(x[5])", "tensor<float>(x[5])"), "tensor(x[5])"));
    TEST_DO(verify(strfmt(pattern, "tensor<float>(x[5])", "double"), "error"));
}

TEST("require that static tensor lambda resolves correct type") {
    TEST_DO(verify("tensor(x[5])(1.0)", "tensor(x[5])"));
    TEST_DO(verify("tensor(x[5],y[10])(1.0)", "tensor(x[5],y[10])"));
    TEST_DO(verify("tensor(x[5],y[10],z[15])(1.0)", "tensor(x[5],y[10],z[15])"));
    TEST_DO(verify("tensor<double>(x[5],y[10],z[15])(1.0)", "tensor(x[5],y[10],z[15])"));
    TEST_DO(verify("tensor<float>(x[5],y[10],z[15])(1.0)", "tensor<float>(x[5],y[10],z[15])"));
}

TEST("require that tensor create resolves correct type") {
    TEST_DO(verify("tensor(x[3]):{{x:0}:double,{x:1}:double,{x:2}:double}", "tensor(x[3])"));
    TEST_DO(verify("tensor(x{}):{{x:a}:double,{x:b}:double,{x:c}:double}", "tensor(x{})"));
    TEST_DO(verify("tensor(x{},y[2]):{{x:a,y:0}:double,{x:a,y:1}:double}", "tensor(x{},y[2])"));
    TEST_DO(verify("tensor<float>(x[3]):{{x:0}:double,{x:1}:double,{x:2}:double}", "tensor<float>(x[3])"));
    TEST_DO(verify("tensor(x[3]):{{x:0}:double+double,{x:1}:double-double,{x:2}:double/double}", "tensor(x[3])"));
    TEST_DO(verify("tensor(x[3]):{{x:0}:double,{x:1}:reduce(tensor(x[2]),sum),{x:2}:double}", "tensor(x[3])"));
    TEST_DO(verify("tensor(x[3]):{{x:0}:double,{x:1}:tensor(x[2]),{x:2}:double}", "error"));
    TEST_DO(verify("tensor(x[3]):{{x:0}:double,{x:1}:error,{x:2}:double}", "error"));
}

TEST("require that dynamic tensor lambda resolves correct type") {
    TEST_DO(verify("tensor(x[3])(error)", "error"));
    TEST_DO(verify("tensor(x[3])(double)", "tensor(x[3])"));
    TEST_DO(verify("tensor<float>(x[3])(double)", "tensor<float>(x[3])"));
    TEST_DO(verify("tensor(x[3])(tensor(x[2]))", "error"));
    TEST_DO(verify("tensor(x[3])(reduce(tensor(x[2])+tensor(x[4]),sum))", "error"));
}

TEST("require that tensor peek resolves correct type") {
    TEST_DO(verify("tensor(x[3]){x:1}", "double"));
    TEST_DO(verify("tensor(x[3]){x:double}", "error"));
    TEST_DO(verify("tensor(x[3]){x:(double)}", "double"));
    TEST_DO(verify("tensor(x[3]){x:3}", "error"));
    TEST_DO(verify("tensor(x{}){x:1}", "double"));
    TEST_DO(verify("tensor(x{}){x:foo}", "double"));
    TEST_DO(verify("tensor(x{}){x:(double)}", "double"));
    TEST_DO(verify("tensor(x{}){x:(tensor(x[3]))}", "error"));
    TEST_DO(verify("tensor(x{},y[3]){x:foo,y:2}", "double"));
    TEST_DO(verify("tensor(x{},y[3]){x:foo}", "tensor(y[3])"));
    TEST_DO(verify("tensor(x{},y[3]){y:2}", "tensor(x{})"));
    TEST_DO(verify("tensor<float>(x[3]){x:1}", "double"));
    TEST_DO(verify("tensor<float>(x[3]){x:double}", "error"));
    TEST_DO(verify("tensor<float>(x[3]){x:(double)}", "double"));
    TEST_DO(verify("tensor<float>(x[3]){x:3}", "error"));
    TEST_DO(verify("tensor<float>(x{}){x:1}", "double"));
    TEST_DO(verify("tensor<float>(x{}){x:foo}", "double"));
    TEST_DO(verify("tensor<float>(x{}){x:(double)}", "double"));
    TEST_DO(verify("tensor<float>(x{}){x:(tensor(x[3]))}", "error"));
    TEST_DO(verify("tensor<float>(x{},y[3]){x:foo,y:2}", "double"));
    TEST_DO(verify("tensor<float>(x{},y[3]){x:foo}", "tensor<float>(y[3])"));
    TEST_DO(verify("tensor<float>(x{},y[3]){y:2}", "tensor<float>(x{})"));
}

TEST("require that tensor concat resolves correct type") {
    TEST_DO(verify("concat(double,double,x)", "tensor(x[2])"));
    TEST_DO(verify("concat(tensor(x[2]),tensor(x[3]),x)", "tensor(x[5])"));
    TEST_DO(verify("concat(tensor(x[2]),tensor(x[2]),y)", "tensor(x[2],y[2])"));
    TEST_DO(verify("concat(tensor(x[2]),tensor(x[3]),y)", "error"));
    TEST_DO(verify("concat(tensor(x[2]),tensor(x{}),x)", "error"));
    TEST_DO(verify("concat(tensor(x[2]),tensor(y{}),x)", "tensor(x[3],y{})"));
    TEST_DO(verify("concat(tensor<float>(x[2]),tensor<float>(x[3]),x)", "tensor<float>(x[5])"));
    TEST_DO(verify("concat(tensor<float>(x[2]),tensor(x[3]),x)", "tensor(x[5])"));
    TEST_DO(verify("concat(tensor<float>(x[2]),double,x)", "tensor<float>(x[3])"));
}

TEST("require that double only expressions can be detected") {
    auto plain_fun = Function::parse("1+2");
    auto complex_fun = Function::parse("reduce(a,sum)");
    NodeTypes plain_types(*plain_fun, {});
    NodeTypes complex_types(*complex_fun, {ValueType::tensor_type({{"x"}})});
    EXPECT_TRUE(plain_types.get_type(plain_fun->root()).is_double());
    EXPECT_TRUE(complex_types.get_type(complex_fun->root()).is_double());
    EXPECT_TRUE(plain_types.all_types_are_double());
    EXPECT_FALSE(complex_types.all_types_are_double());
}

TEST("require that empty type repo works as expected") {
    NodeTypes types;
    auto function = Function::parse("1+2");
    EXPECT_FALSE(function->has_error());
    EXPECT_TRUE(types.get_type(function->root()).is_error());
    EXPECT_FALSE(types.all_types_are_double());
}

TEST_MAIN() { TEST_RUN_ALL(); }