aboutsummaryrefslogtreecommitdiffstats
path: root/eval/src/tests/eval/tensor_lambda/tensor_lambda_test.cpp
blob: be19795a437647c2d5574dfcc2e6f327e713b294 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include <vespa/vespalib/testkit/test_kit.h>
#include <vespa/eval/eval/tensor_function.h>
#include <vespa/eval/eval/simple_value.h>
#include <vespa/eval/eval/fast_value.h>
#include <vespa/eval/instruction/replace_type_function.h>
#include <vespa/eval/instruction/dense_cell_range_function.h>
#include <vespa/eval/instruction/dense_lambda_peek_function.h>
#include <vespa/eval/instruction/fast_rename_optimizer.h>
#include <vespa/eval/eval/test/gen_spec.h>
#include <vespa/eval/eval/test/eval_fixture.h>
#include <vespa/eval/eval/tensor_nodes.h>

#include <vespa/vespalib/util/stringfmt.h>
#include <vespa/vespalib/util/stash.h>

using namespace vespalib;
using namespace vespalib::eval;
using namespace vespalib::eval::test;
using namespace vespalib::eval::tensor_function;

const ValueBuilderFactory &simple_factory = SimpleValueBuilderFactory::get();
const ValueBuilderFactory &prod_factory = FastValueBuilderFactory::get();

EvalFixture::ParamRepo make_params() {
    return EvalFixture::ParamRepo()
        .add("a", GenSpec(1))
        .add("b", GenSpec(2))
        .add("x3", GenSpec().idx("x", 3))
        .add("x3_float", GenSpec().idx("x", 3).cells(CellType::FLOAT))
        .add("x3_bfloat16", GenSpec().idx("x", 3).cells(CellType::BFLOAT16))
        .add("x3_int8", GenSpec().idx("x", 3).cells(CellType::INT8))
        .add("x3m", GenSpec().map("x", {"0", "1", "2"}))
        .add("x3y5", GenSpec().idx("x", 3).idx("y", 5))
        .add("x3y5_float", GenSpec().idx("x", 3).idx("y", 5).cells(CellType::FLOAT))
        .add("x3y5_bfloat16", GenSpec().idx("x", 3).idx("y", 5).cells(CellType::BFLOAT16))
        .add("x3y5_int8", GenSpec().idx("x", 3).idx("y", 5).cells(CellType::INT8))
        .add("x15", GenSpec().idx("x", 15))
        .add("x15_float", GenSpec().idx("x", 15).cells(CellType::FLOAT))
        .add("x15_bfloat16", GenSpec().idx("x", 15).cells(CellType::BFLOAT16))
        .add("x15_int8", GenSpec().idx("x", 15).cells(CellType::INT8));
}
EvalFixture::ParamRepo param_repo = make_params();

template <typename T, typename F>
void verify_impl(const vespalib::string &expr, const vespalib::string &expect, F &&inspect) {
    EvalFixture fixture(prod_factory, expr, param_repo, true);
    EvalFixture slow_fixture(prod_factory, expr, param_repo, false);
    EvalFixture simple_factory_fixture(simple_factory, expr, param_repo, false);
    auto expect_spec = EvalFixture::ref(expect, param_repo);
    EXPECT_EQUAL(fixture.result(), expect_spec);
    EXPECT_EQUAL(slow_fixture.result(), expect_spec);
    EXPECT_EQUAL(simple_factory_fixture.result(), expect_spec);
    EXPECT_EQUAL(EvalFixture::ref(expr, param_repo), expect_spec);
    auto info = fixture.find_all<T>();
    if (EXPECT_EQUAL(info.size(), 1u)) {
        inspect(info[0]);
    }
}
template <typename T>
void verify_impl(const vespalib::string &expr, const vespalib::string &expect) {
    verify_impl<T>(expr, expect, [](const T*){});
}

void verify_generic(const vespalib::string &expr, const vespalib::string &expect) {
    verify_impl<tensor_function::Lambda>(expr, expect);
}

void verify_reshape(const vespalib::string &expr, const vespalib::string &expect) {
    verify_impl<ReplaceTypeFunction>(expr, expect);
}

void verify_range(const vespalib::string &expr, const vespalib::string &expect) {
    verify_impl<DenseCellRangeFunction>(expr, expect);
}

void verify_idx_fun(const vespalib::string &expr, const vespalib::string &expect,
                    const vespalib::string &expect_idx_fun)
{
    verify_impl<DenseLambdaPeekFunction>(expr, expect,
                                         [&](const DenseLambdaPeekFunction *info)
                                         {
                                             EXPECT_EQUAL(info->idx_fun_dump(), expect_idx_fun);
                                         });
}

void verify_const(const vespalib::string &expr, const vespalib::string &expect) {
    verify_impl<ConstValue>(expr, expect);
}

//-----------------------------------------------------------------------------

TEST("require that simple constant tensor lambda works") {
    TEST_DO(verify_const("tensor(x[3])(x+1)", "tensor(x[3]):[1,2,3]"));
}

TEST("require that tensor lambda can be used for cell type casting") {
    TEST_DO(verify_idx_fun("tensor(x[3])(x3_float{x:(x)})", "tensor(x[3]):[1,2,3]", "f(x)(x)"));
    TEST_DO(verify_idx_fun("tensor(x[3])(x3_bfloat16{x:(x)})", "tensor(x[3]):[1,2,3]", "f(x)(x)"));
    TEST_DO(verify_idx_fun("tensor(x[3])(x3_int8{x:(x)})", "tensor(x[3]):[1,2,3]", "f(x)(x)"));
    TEST_DO(verify_idx_fun("tensor<float>(x[3])(x3{x:(x)})", "tensor<float>(x[3]):[1,2,3]", "f(x)(x)"));
    TEST_DO(verify_idx_fun("tensor<bfloat16>(x[3])(x3{x:(x)})", "tensor<bfloat16>(x[3]):[1,2,3]", "f(x)(x)"));
    TEST_DO(verify_idx_fun("tensor<int8>(x[3])(x3{x:(x)})", "tensor<int8>(x[3]):[1,2,3]", "f(x)(x)"));
}

TEST("require that constant nested tensor lambda using tensor peek works") {
    TEST_DO(verify_const("tensor(x[2])(tensor(y[2])((x+y)+1){y:(x)})", "tensor(x[2]):[1,3]"));
}

TEST("require that tensor reshape is optimized") {
    TEST_DO(verify_reshape("tensor(x[15])(x3y5{x:(x/5),y:(x%5)})", "x15"));
    TEST_DO(verify_reshape("tensor(x[3],y[5])(x15{x:(x*5+y)})", "x3y5"));
    TEST_DO(verify_reshape("tensor<float>(x[15])(x3y5_float{x:(x/5),y:(x%5)})", "x15_float"));
    TEST_DO(verify_reshape("tensor<bfloat16>(x[15])(x3y5_bfloat16{x:(x/5),y:(x%5)})", "x15_bfloat16"));
    TEST_DO(verify_reshape("tensor<int8>(x[15])(x3y5_int8{x:(x/5),y:(x%5)})", "x15_int8"));
}

TEST("require that tensor reshape with non-matching cell type requires cell copy") {
    TEST_DO(verify_idx_fun("tensor(x[15])(x3y5_float{x:(x/5),y:(x%5)})", "x15", "f(x)((floor((x/5))*5)+(x%5))"));
    TEST_DO(verify_idx_fun("tensor<float>(x[15])(x3y5{x:(x/5),y:(x%5)})", "x15_float", "f(x)((floor((x/5))*5)+(x%5))"));
    TEST_DO(verify_idx_fun("tensor(x[3],y[5])(x15_float{x:(x*5+y)})", "x3y5", "f(x,y)((x*5)+y)"));
    TEST_DO(verify_idx_fun("tensor<float>(x[3],y[5])(x15{x:(x*5+y)})", "x3y5_float", "f(x,y)((x*5)+y)"));
    TEST_DO(verify_idx_fun("tensor<bfloat16>(x[3],y[5])(x15{x:(x*5+y)})", "x3y5_bfloat16", "f(x,y)((x*5)+y)"));
    TEST_DO(verify_idx_fun("tensor<int8>(x[3],y[5])(x15{x:(x*5+y)})", "x3y5_int8", "f(x,y)((x*5)+y)"));
}

TEST("require that tensor cell subrange view is optimized") {
    TEST_DO(verify_range("tensor(y[5])(x3y5{x:1,y:(y)})", "x3y5{x:1}"));
    TEST_DO(verify_range("tensor(x[3])(x15{x:(x+5)})", "tensor(x[3]):[6,7,8]"));
    TEST_DO(verify_range("tensor<float>(y[5])(x3y5_float{x:1,y:(y)})", "x3y5_float{x:1}"));
    TEST_DO(verify_range("tensor<float>(x[3])(x15_float{x:(x+5)})", "tensor<float>(x[3]):[6,7,8]"));
    TEST_DO(verify_range("tensor<float>(x[3])(x15_float{x:(x+5)})", "tensor<float>(x[3]):[6,7,8]"));
    TEST_DO(verify_range("tensor<bfloat16>(x[3])(x15_bfloat16{x:(x+5)})", "tensor<bfloat16>(x[3]):[6,7,8]"));
    TEST_DO(verify_range("tensor<int8>(x[3])(x15_int8{x:(x+5)})", "tensor<int8>(x[3]):[6,7,8]"));
}

TEST("require that tensor cell subrange with non-matching cell type requires cell copy") {
    TEST_DO(verify_idx_fun("tensor(x[3])(x15_float{x:(x+5)})", "tensor(x[3]):[6,7,8]", "f(x)(x+5)"));
    TEST_DO(verify_idx_fun("tensor<float>(x[3])(x15{x:(x+5)})", "tensor<float>(x[3]):[6,7,8]", "f(x)(x+5)"));
    TEST_DO(verify_idx_fun("tensor<bfloat16>(x[3])(x15{x:(x+5)})", "tensor<bfloat16>(x[3]):[6,7,8]", "f(x)(x+5)"));
    TEST_DO(verify_idx_fun("tensor<int8>(x[3])(x15{x:(x+5)})", "tensor<int8>(x[3]):[6,7,8]", "f(x)(x+5)"));
}

TEST("require that non-continuous cell extraction is optimized") {
    TEST_DO(verify_idx_fun("tensor(x[3])(x3y5{x:(x),y:2})", "x3y5{y:2}", "f(x)((floor(x)*5)+2)"));
    TEST_DO(verify_idx_fun("tensor(x[3])(x3y5_float{x:(x),y:2})", "x3y5{y:2}", "f(x)((floor(x)*5)+2)"));
    TEST_DO(verify_idx_fun("tensor<float>(x[3])(x3y5{x:(x),y:2})", "x3y5_float{y:2}", "f(x)((floor(x)*5)+2)"));
    TEST_DO(verify_idx_fun("tensor<float>(x[3])(x3y5_float{x:(x),y:2})", "x3y5_float{y:2}", "f(x)((floor(x)*5)+2)"));
    TEST_DO(verify_idx_fun("tensor<bfloat16>(x[3])(x3y5_bfloat16{x:(x),y:2})", "x3y5_bfloat16{y:2}", "f(x)((floor(x)*5)+2)"));
    TEST_DO(verify_idx_fun("tensor<int8>(x[3])(x3y5_int8{x:(x),y:2})", "x3y5_int8{y:2}", "f(x)((floor(x)*5)+2)"));
}

TEST("require that simple dynamic tensor lambda works") {
    TEST_DO(verify_generic("tensor(x[3])(x+a)", "tensor(x[3]):[1,2,3]"));
    TEST_DO(verify_generic("tensor<float>(x[3])(x+a)", "tensor<float>(x[3]):[1,2,3]"));
    TEST_DO(verify_generic("tensor<bfloat16>(x[3])(x+a)", "tensor<bfloat16>(x[3]):[1,2,3]"));
    TEST_DO(verify_generic("tensor<int8>(x[3])(x+a)", "tensor<int8>(x[3]):[1,2,3]"));
}

TEST("require that compiled multi-dimensional multi-param dynamic tensor lambda works") {
    TEST_DO(verify_generic("tensor(x[3],y[2])((b-a)+x+y)", "tensor(x[3],y[2]):[[1,2],[2,3],[3,4]]"));
    TEST_DO(verify_generic("tensor<float>(x[3],y[2])((b-a)+x+y)", "tensor<float>(x[3],y[2]):[[1,2],[2,3],[3,4]]"));
}

TEST("require that interpreted multi-dimensional multi-param dynamic tensor lambda works") {
    TEST_DO(verify_generic("tensor(x[3],y[2])((x3{x:(a)}-a)+x+y)", "tensor(x[3],y[2]):[[1,2],[2,3],[3,4]]"));
    TEST_DO(verify_generic("tensor<float>(x[3],y[2])((x3{x:(a)}-a)+x+y)", "tensor<float>(x[3],y[2]):[[1,2],[2,3],[3,4]]"));
}

TEST("require that tensor lambda can be used for tensor slicing") {
    TEST_DO(verify_generic("tensor(x[2])(x3{x:(x+a)})", "tensor(x[2]):[2,3]"));
    TEST_DO(verify_generic("tensor(x[2])(a+x3{x:(x)})", "tensor(x[2]):[2,3]"));
}

TEST("require that tensor lambda can be used to convert from sparse to dense tensors") {
    TEST_DO(verify_generic("tensor(x[3])(x3m{x:(x)})", "tensor(x[3]):[1,2,3]"));
    TEST_DO(verify_generic("tensor(x[2])(x3m{x:(x)})", "tensor(x[2]):[1,2]"));
}

TEST("require that dynamic nested tensor lambda using tensor peek works") {
    TEST_DO(verify_generic("tensor(x[2])(tensor(y[2])((x+y)+a){y:(x)})", "tensor(x[2]):[1,3]"));
}

TEST("require that out-of-bounds cell extraction is not optimized") {
    TEST_DO(verify_generic("tensor(x[3])(x3y5{x:1,y:(x+3)})", "tensor(x[3]):[9,10,0]"));
    TEST_DO(verify_generic("tensor(x[3])(x3y5{x:1,y:(x-1)})", "tensor(x[3]):[0,6,7]"));
    TEST_DO(verify_generic("tensor(x[3])(x3y5{x:(x+1),y:(x)})", "tensor(x[3]):[6,12,0]"));
    TEST_DO(verify_generic("tensor(x[3])(x3y5{x:(x-1),y:(x)})", "tensor(x[3]):[0,2,8]"));
}

TEST("require that non-double result from inner tensor lambda function fails type resolving") {
    auto fun_a = Function::parse("tensor(x[2])(a)");
    auto fun_b = Function::parse("tensor(x[2])(a{y:(x)})");
    NodeTypes types_ad(*fun_a, {ValueType::from_spec("double")});
    NodeTypes types_at(*fun_a, {ValueType::from_spec("tensor(y[2])")});
    NodeTypes types_bd(*fun_b, {ValueType::from_spec("double")});
    NodeTypes types_bt(*fun_b, {ValueType::from_spec("tensor(y[2])")});
    EXPECT_EQUAL(types_ad.get_type(fun_a->root()).to_spec(), "tensor(x[2])");
    EXPECT_EQUAL(types_at.get_type(fun_a->root()).to_spec(), "error");
    EXPECT_EQUAL(types_bd.get_type(fun_b->root()).to_spec(), "error");
    EXPECT_EQUAL(types_bt.get_type(fun_b->root()).to_spec(), "tensor(x[2])");
}

TEST("require that type resolving also include nodes in the inner tensor lambda function") {
    auto fun = Function::parse("tensor(x[2])(a)");
    NodeTypes types(*fun, {ValueType::from_spec("double")});
    auto lambda = nodes::as<nodes::TensorLambda>(fun->root());
    ASSERT_TRUE(lambda != nullptr);
    EXPECT_EQUAL(types.get_type(*lambda).to_spec(), "tensor(x[2])");
    auto symbol = nodes::as<nodes::Symbol>(lambda->lambda().root());
    ASSERT_TRUE(symbol != nullptr);
    EXPECT_EQUAL(types.get_type(*symbol).to_spec(), "double");
}

size_t count_nodes(const NodeTypes &types) {
    size_t cnt = 0;
    types.each([&](const auto &, const auto &){++cnt;});
    return cnt;
}

TEST("require that type exporting also include nodes in the inner tensor lambda function") {
    auto fun = Function::parse("tensor(x[2])(tensor(y[2])((x+y)+a){y:(x)})");
    NodeTypes types(*fun, {ValueType::from_spec("double")});
    const auto &root = fun->root();
    NodeTypes copy = types.export_types(root);
    EXPECT_TRUE(copy.errors().empty());
    EXPECT_EQUAL(count_nodes(types), count_nodes(copy));

    auto lambda = nodes::as<nodes::TensorLambda>(root);
    ASSERT_TRUE(lambda != nullptr);
    NodeTypes outer = copy.export_types(lambda->lambda().root());
    EXPECT_TRUE(outer.errors().empty());

    auto inner_lambda = nodes::as<nodes::TensorLambda>(lambda->lambda().root().get_child(0));
    ASSERT_TRUE(inner_lambda != nullptr);
    NodeTypes inner = outer.export_types(inner_lambda->lambda().root());
    EXPECT_TRUE(inner.errors().empty());
    // [x, y, (x+y), a, (x+y)+a] are the 5 nodes:
    EXPECT_EQUAL(count_nodes(inner), 5u);
}

TEST_MAIN() { TEST_RUN_ALL(); }