summaryrefslogtreecommitdiffstats
path: root/eval/src/tests/tensor/dense_simple_join_function/dense_simple_join_function_test.cpp
blob: 6ad60d2e3f55a4cf2183d0dbe593cfb4cc1f540b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright Verizon Media. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include <vespa/vespalib/testkit/test_kit.h>
#include <vespa/eval/eval/tensor_function.h>
#include <vespa/eval/tensor/dense/dense_simple_join_function.h>
#include <vespa/eval/eval/test/eval_fixture.h>
#include <vespa/eval/eval/test/tensor_model.hpp>

#include <vespa/vespalib/util/stringfmt.h>

using namespace vespalib;
using namespace vespalib::eval;
using namespace vespalib::eval::test;
using namespace vespalib::tensor;
using namespace vespalib::eval::tensor_function;

using vespalib::make_string_short::fmt;

using Primary = DenseSimpleJoinFunction::Primary;
using Overlap = DenseSimpleJoinFunction::Overlap;

namespace vespalib::tensor {

std::ostream &operator<<(std::ostream &os, Primary primary)
{
    switch(primary) {
    case Primary::LHS: return os << "LHS";
    case Primary::RHS: return os << "RHS";
    }
    abort();
}

std::ostream &operator<<(std::ostream &os, Overlap overlap)
{
    switch(overlap) {
    case Overlap::FULL: return os << "FULL";
    case Overlap::INNER: return os << "INNER";
    case Overlap::OUTER: return os << "OUTER";
    }
    abort();
}

}

const ValueBuilderFactory &prod_factory = FastValueBuilderFactory::get();

EvalFixture::ParamRepo make_params() {
    return EvalFixture::ParamRepo()
        .add("a", spec(1.5))
        .add("b", spec(2.5))
        .add("sparse", spec({x({"a"})}, N()))
        .add("mixed", spec({x({"a"}),y(5)}, N()))
        .add_cube("a", 1, "b", 1, "c", 1)
        .add_cube("x", 1, "y", 1, "z", 1)
        .add_cube("x", 3, "y", 5, "z", 3)
        .add_vector("x", 5)
        .add_dense({{"c", 5}, {"d", 1}})
        .add_dense({{"b", 1}, {"c", 5}})
        .add_matrix("x", 3, "y", 5, [](size_t idx) noexcept { return double((idx * 2) + 3); })
        .add_matrix("x", 3, "y", 5, [](size_t idx) noexcept { return double((idx * 3) + 2); })
        .add_vector("y", 5, [](size_t idx) noexcept { return double((idx * 2) + 3); })
        .add_vector("y", 5, [](size_t idx) noexcept { return double((idx * 3) + 2); })
        .add_matrix("y", 5, "z", 3, [](size_t idx) noexcept { return double((idx * 2) + 3); })
        .add_matrix("y", 5, "z", 3, [](size_t idx) noexcept { return double((idx * 3) + 2); });
}
EvalFixture::ParamRepo param_repo = make_params();

void verify_optimized(const vespalib::string &expr, Primary primary, Overlap overlap, bool pri_mut, size_t factor, int p_inplace = -1) {
    EvalFixture slow_fixture(prod_factory, expr, param_repo, false);
    EvalFixture fixture(prod_factory, expr, param_repo, true, true);
    EXPECT_EQUAL(fixture.result(), EvalFixture::ref(expr, param_repo));
    EXPECT_EQUAL(fixture.result(), slow_fixture.result());
    auto info = fixture.find_all<DenseSimpleJoinFunction>();
    ASSERT_EQUAL(info.size(), 1u);
    EXPECT_TRUE(info[0]->result_is_mutable());
    EXPECT_EQUAL(info[0]->primary(), primary);
    EXPECT_EQUAL(info[0]->overlap(), overlap);
    EXPECT_EQUAL(info[0]->primary_is_mutable(), pri_mut);
    EXPECT_EQUAL(info[0]->factor(), factor);
    EXPECT_TRUE((p_inplace == -1) || (fixture.num_params() > size_t(p_inplace)));
    for (size_t i = 0; i < fixture.num_params(); ++i) {
        if (i == size_t(p_inplace)) {
            EXPECT_EQUAL(fixture.get_param(i), fixture.result());
        } else {
            EXPECT_NOT_EQUAL(fixture.get_param(i), fixture.result());
        }
    }
}

void verify_not_optimized(const vespalib::string &expr) {
    EvalFixture slow_fixture(prod_factory, expr, param_repo, false);
    EvalFixture fixture(prod_factory, expr, param_repo, true);
    EXPECT_EQUAL(fixture.result(), EvalFixture::ref(expr, param_repo));
    EXPECT_EQUAL(fixture.result(), slow_fixture.result());
    auto info = fixture.find_all<DenseSimpleJoinFunction>();
    EXPECT_TRUE(info.empty());
}

TEST("require that basic join is optimized") {
    TEST_DO(verify_optimized("y5+y5$2", Primary::RHS, Overlap::FULL, false, 1));
}

TEST("require that unit join is optimized") {
    TEST_DO(verify_optimized("a1b1c1+x1y1z1", Primary::RHS, Overlap::FULL, false, 1));
}

TEST("require that trivial dimensions do not affect overlap calculation") {
    TEST_DO(verify_optimized("c5d1+b1c5", Primary::RHS, Overlap::FULL, false, 1));
}

TEST("require that outer nesting is preferred to inner nesting") {
    TEST_DO(verify_optimized("a1b1c1+y5", Primary::RHS, Overlap::OUTER, false, 5));
}

TEST("require that non-subset join is not optimized") {
    TEST_DO(verify_not_optimized("x5+y5"));
}

TEST("require that subset join with complex overlap is not optimized") {
    TEST_DO(verify_not_optimized("x3y5z3+y5"));
}

struct LhsRhs {
    vespalib::string lhs;
    vespalib::string rhs;
    size_t lhs_size;
    size_t rhs_size;
    Overlap overlap;
    size_t factor;
    LhsRhs(const vespalib::string &lhs_in, const vespalib::string &rhs_in,
           size_t lhs_size_in, size_t rhs_size_in, Overlap overlap_in) noexcept
        : lhs(lhs_in), rhs(rhs_in), lhs_size(lhs_size_in), rhs_size(rhs_size_in), overlap(overlap_in), factor(1)
    {
        if (lhs_size > rhs_size) {
            ASSERT_EQUAL(lhs_size % rhs_size, 0u);
            factor = (lhs_size / rhs_size);
        } else {
            ASSERT_EQUAL(rhs_size % lhs_size, 0u);
            factor = (rhs_size / lhs_size);
        }
    }
};

vespalib::string adjust_param(const vespalib::string &str, bool float_cells, bool mut_cells, bool is_rhs) {
    vespalib::string result = str;
    if (mut_cells) {
        result = "@" + result;
    }
    if (float_cells) {
        result += "f";
    }
    if (is_rhs) {
        result += "$2";
    }
    return result;
}

TEST("require that various parameter combinations work") {
    for (bool left_float: {false, true}) {
        for (bool right_float: {false, true}) {
            bool float_result = (left_float && right_float);
            for (bool left_mut: {false, true}) {
                for (bool right_mut: {false, true}) {
                    for (const char *op_pattern: {"%s+%s", "%s-%s", "%s*%s"}) {
                        for (const LhsRhs &params:
                            {       LhsRhs("y5",   "y5", 5,  5, Overlap::FULL),
                                    LhsRhs("y5", "x3y5", 5, 15, Overlap::INNER),
                                    LhsRhs("y5", "y5z3", 5, 15, Overlap::OUTER),
                                    LhsRhs("x3y5", "y5", 15, 5, Overlap::INNER),
                                    LhsRhs("y5z3", "y5", 15, 5, Overlap::OUTER)})
                        {
                            vespalib::string left = adjust_param(params.lhs, left_float, left_mut, false);
                            vespalib::string right = adjust_param(params.rhs, right_float, right_mut, true);
                            vespalib::string expr = fmt(op_pattern, left.c_str(), right.c_str());
                            TEST_STATE(expr.c_str());
                            Primary primary = Primary::RHS;
                            if (params.overlap == Overlap::FULL) {
                                bool w_lhs = ((left_float == float_result) && left_mut);
                                bool w_rhs = ((right_float == float_result) && right_mut);
                                if (w_lhs && !w_rhs) {
                                    primary = Primary::LHS;
                                }
                            } else if (params.lhs_size > params.rhs_size) {
                                primary = Primary::LHS;
                            }
                            bool pri_mut = (primary == Primary::LHS) ? left_mut : right_mut;
                            bool pri_float = (primary == Primary::LHS) ? left_float : right_float;
                            int p_inplace = -1;
                            if (pri_mut && (pri_float == float_result)) {
                                p_inplace = (primary == Primary::LHS) ? 0 : 1;
                            }
                            verify_optimized(expr, primary, params.overlap, pri_mut, params.factor, p_inplace);
                        }
                    }
                }
            }
        }
    }
}

TEST("require that scalar values are not optimized") {
    TEST_DO(verify_not_optimized("a+b"));
    TEST_DO(verify_not_optimized("a+y5"));
    TEST_DO(verify_not_optimized("y5+b"));
    TEST_DO(verify_not_optimized("a+sparse"));
    TEST_DO(verify_not_optimized("sparse+a"));
    TEST_DO(verify_not_optimized("a+mixed"));
    TEST_DO(verify_not_optimized("mixed+a"));
}

TEST("require that mapped tensors are not optimized") {
    TEST_DO(verify_not_optimized("sparse+sparse"));
    TEST_DO(verify_not_optimized("sparse+y5"));
    TEST_DO(verify_not_optimized("y5+sparse"));
    TEST_DO(verify_not_optimized("sparse+mixed"));
    TEST_DO(verify_not_optimized("mixed+sparse"));
}

TEST("require mixed tensors are not optimized") {
    TEST_DO(verify_not_optimized("mixed+mixed"));
    TEST_DO(verify_not_optimized("mixed+y5"));
    TEST_DO(verify_not_optimized("y5+mixed"));
}

TEST_MAIN() { TEST_RUN_ALL(); }