summaryrefslogtreecommitdiffstats
path: root/eval/src/tests/tensor/dense_tensor_function_compiler/dense_tensor_function_compiler_test.cpp
blob: 7df436d85a1770f217fb09ebc98fc9ff65645d1e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// Copyright 2017 Yahoo Holdings. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include <vespa/vespalib/testkit/test_kit.h>
#include <vespa/eval/tensor/dense/dense_dot_product_function.h>
#include <vespa/eval/tensor/dense/dense_xw_product_function.h>
#include <vespa/eval/tensor/dense/dense_tensor_function_compiler.h>
#include <vespa/eval/eval/operation.h>

using namespace vespalib::eval;
using namespace vespalib::eval::operation;
using namespace vespalib::eval::tensor_function;
using namespace vespalib::tensor;
using vespalib::Stash;

//-----------------------------------------------------------------------------

const TensorFunction &
compileDotProduct(const vespalib::string &lhsType,
                  const vespalib::string &rhsType,
                  Stash &stash)
{
    const Node &reduceNode = reduce(join(inject(ValueType::from_spec(lhsType), 1, stash),
                                         inject(ValueType::from_spec(rhsType), 3, stash),
                                         Mul::f, stash),
                                    Aggr::SUM, {}, stash);
    return DenseTensorFunctionCompiler::compile(reduceNode, stash);
}

void
assertCompiledDotProduct(const vespalib::string &lhsType,
                         const vespalib::string &rhsType)
{
    Stash stash;
    const TensorFunction &func = compileDotProduct(lhsType, rhsType, stash);
    const DenseDotProductFunction *dotProduct = as<DenseDotProductFunction>(func);
    ASSERT_TRUE(dotProduct);
    EXPECT_EQUAL(1u, dotProduct->lhsTensorId());
    EXPECT_EQUAL(3u, dotProduct->rhsTensorId());
}

void
assertNotCompiledDotProduct(const vespalib::string &lhsType,
                            const vespalib::string &rhsType)
{
    Stash stash;
    const TensorFunction &func = compileDotProduct(lhsType, rhsType, stash);
    const Reduce *reduce = as<Reduce>(func);
    EXPECT_TRUE(reduce);
}

//-----------------------------------------------------------------------------

const TensorFunction &
compileXWProduct(const vespalib::string &lhsType,
                 const vespalib::string &rhsType,
                 const vespalib::string &dim,
                 Stash &stash)
{
    const Node &reduceNode = reduce(join(inject(ValueType::from_spec(lhsType), 1, stash),
                                         inject(ValueType::from_spec(rhsType), 3, stash),
                                         Mul::f, stash),
                                    Aggr::SUM, {dim}, stash);
    return DenseTensorFunctionCompiler::compile(reduceNode, stash);
}

void
assertCompiledXWProduct(const vespalib::string &vecTypeStr,
                        const vespalib::string &matTypeStr,
                        const vespalib::string &dim)
{
    Stash stash;
    const TensorFunction &func = compileXWProduct(vecTypeStr, matTypeStr, dim, stash);
    const TensorFunction &inv_func = compileXWProduct(matTypeStr, vecTypeStr, dim, stash);
    const DenseXWProductFunction *xwProduct = as<DenseXWProductFunction>(func);
    const DenseXWProductFunction *inv_xwProduct = as<DenseXWProductFunction>(inv_func);
    ValueType vecType = ValueType::from_spec(vecTypeStr);
    ValueType matType = ValueType::from_spec(matTypeStr);
    size_t common_idx = matType.dimension_index(vecType.dimensions()[0].name);
    ASSERT_TRUE(xwProduct);
    ASSERT_TRUE(inv_xwProduct);
    ASSERT_TRUE(common_idx != ValueType::Dimension::npos);
    EXPECT_EQUAL(xwProduct->vectorId(), 1u);
    EXPECT_EQUAL(inv_xwProduct->vectorId(), 3u);
    EXPECT_EQUAL(xwProduct->matrixId(), 3u);
    EXPECT_EQUAL(inv_xwProduct->matrixId(), 1u);
    EXPECT_EQUAL(xwProduct->vectorSize(), vecType.dimensions()[0].size);
    EXPECT_EQUAL(inv_xwProduct->vectorSize(), vecType.dimensions()[0].size);
    EXPECT_EQUAL(xwProduct->resultSize(), matType.dimensions()[1 - common_idx].size);
    EXPECT_EQUAL(inv_xwProduct->resultSize(), matType.dimensions()[1 - common_idx].size);
    EXPECT_EQUAL(xwProduct->matrixHasCommonDimensionInnermost(), (common_idx == 1));
    EXPECT_EQUAL(inv_xwProduct->matrixHasCommonDimensionInnermost(), (common_idx == 1));
}

void
assertNotCompiledXWProduct(const vespalib::string &vecType,
                           const vespalib::string &matType,
                           const vespalib::string &dim)
{
    Stash stash;
    const TensorFunction &func = compileXWProduct(vecType, matType, dim, stash);
    const TensorFunction &inv_func = compileXWProduct(matType, vecType, dim, stash);
    const Reduce *reduce = as<Reduce>(func);
    const Reduce *inv_reduce = as<Reduce>(inv_func);
    EXPECT_TRUE(reduce);
    EXPECT_TRUE(inv_reduce);
}

//-----------------------------------------------------------------------------

TEST("require that dot product with compatible dimensions is compiled")
{
    TEST_DO(assertCompiledDotProduct("tensor(x[5])", "tensor(x[5])"));
    TEST_DO(assertCompiledDotProduct("tensor(x[3])", "tensor(x[5])"));
    TEST_DO(assertCompiledDotProduct("tensor(x[5])", "tensor(x[3])"));
    TEST_DO(assertCompiledDotProduct("tensor(x[])",  "tensor(x[5])"));
    TEST_DO(assertCompiledDotProduct("tensor(x[5])", "tensor(x[])"));
    TEST_DO(assertCompiledDotProduct("tensor(x[])",  "tensor(x[])"));
}

TEST("require that dot product with incompatible dimensions is NOT compiled")
{
    TEST_DO(assertNotCompiledDotProduct("tensor(x[5])",      "tensor(y[5])"));
    TEST_DO(assertNotCompiledDotProduct("tensor(y[5])",      "tensor(x[5])"));
    TEST_DO(assertNotCompiledDotProduct("tensor(y[])",       "tensor(x[])"));
    TEST_DO(assertNotCompiledDotProduct("tensor(x[5])",      "tensor(x[5],y[7])"));
    TEST_DO(assertNotCompiledDotProduct("tensor(x[5],y[7])", "tensor(x[5],y[7])"));
}

//-----------------------------------------------------------------------------

TEST("require that xw products with compatible dimensions are compiled") {
    TEST_DO(assertCompiledXWProduct("tensor(x[3])", "tensor(x[3],y[4])", "x"));
    TEST_DO(assertCompiledXWProduct("tensor(y[4])", "tensor(x[3],y[4])", "y"));
}

TEST("require that xw products with incompatible dimensions are not compiled") {
    TEST_DO(assertNotCompiledXWProduct("tensor(x[3])", "tensor(x[3],y[4])", "y"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[])",  "tensor(x[3],y[4])", "x"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[3])", "tensor(x[],y[4])",  "x"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[3])", "tensor(x[3],y[])",  "x"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[2])", "tensor(x[3],y[4])", "x"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[4])", "tensor(x[3],y[4])", "x"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[3])", "tensor(y[3],z[4])", "x"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[3])", "tensor(y[3],z[4])", "y"));
    TEST_DO(assertNotCompiledXWProduct("tensor(x[3])", "tensor(y[3],z[4])", "z"));
    TEST_DO(assertNotCompiledXWProduct("tensor(y[4])", "tensor(x[3],y[4])", "x"));
    TEST_DO(assertNotCompiledXWProduct("tensor(y[3])", "tensor(x[3],y[4])", "y"));
    TEST_DO(assertNotCompiledXWProduct("tensor(y[5])", "tensor(x[3],y[4])", "y"));
}

//-----------------------------------------------------------------------------

TEST_MAIN() { TEST_RUN_ALL(); }