aboutsummaryrefslogtreecommitdiffstats
path: root/eval/src/vespa/eval/eval/node_types.cpp
blob: 4ba40726f5ae2cdc798f55812597d564f4a717ae (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "check_type.h"
#include "node_traverser.h"
#include "node_types.h"
#include <vespa/vespalib/util/stringfmt.h>
#include <vespa/vespalib/util/classname.h>

using vespalib::make_string_short::fmt;

namespace vespalib::eval {
namespace nodes {
namespace {

class State
{
private:
    const std::vector<ValueType>      &_params;
    std::map<const Node *, ValueType> &_type_map;
    std::vector<vespalib::string>     &_errors;

public:
    State(const std::vector<ValueType> &params,
          std::map<const Node *, ValueType> &type_map,
          std::vector<vespalib::string> &errors)
        : _params(params), _type_map(type_map), _errors(errors) {}

    const ValueType &param_type(size_t idx) {
        assert(idx < _params.size());
        return _params[idx];
    }
    void bind(const ValueType &type, const Node &node) {
        auto pos = _type_map.find(&node);
        assert(pos == _type_map.end());
        _type_map.emplace(&node, type);
    }
    const ValueType &type(const Node &node) {
        auto pos = _type_map.find(&node);
        assert(pos != _type_map.end());
        return pos->second;
    }
    void add_error(const vespalib::string &msg) {
        _errors.push_back(msg);
    }
};

struct TypeResolver : public NodeVisitor, public NodeTraverser {
    State state;
    TypeResolver(const std::vector<ValueType> &params_in,
                 std::map<const Node *, ValueType> &type_map_out,
                 std::vector<vespalib::string> &errors_out);
    ~TypeResolver();

    const ValueType &param_type(size_t idx) {
        return state.param_type(idx);
    }

    void fail(const Node &node, const vespalib::string &msg, bool child_types = true) {
        auto str = fmt("%s: %s", vespalib::getClassName(node).c_str(), msg.c_str());
        if (child_types) {
            str += ", child types: [";
            for (size_t i = 0; i < node.num_children(); ++i) {
                if (i > 0) {
                    str += ", ";
                }
                str += state.type(node.get_child(i)).to_spec();
            }
            str += "]";
        }
        state.add_error(str);
        state.bind(ValueType::error_type(), node);
    }

    void bind(const ValueType &type, const Node &node, bool check_error = true) {
        if (check_error && type.is_error()) {
            fail(node, "type resolving failed");
        } else {
            state.bind(type, node);
        }
    }

    const ValueType &type(const Node &node) {
        return state.type(node);
    }

    void import_errors(const NodeTypes &types) {
        for (const auto &err: types.errors()) {
            state.add_error(fmt("[lambda]: %s", err.c_str()));
        }
    }

    void import_types(const NodeTypes &types) {
        types.each([&](const Node &node, const ValueType &type)
                   {
                       state.bind(type, node);
                   });
    }

    //-------------------------------------------------------------------------

    bool check_error(const Node &node) {
        for (size_t i = 0; i < node.num_children(); ++i) {
            if (type(node.get_child(i)).is_error()) {
                bind(ValueType::error_type(), node, false);
                return true;
            }
        }
        return false;
    }

    void resolve_op1(const Node &node) {
        bind(type(node.get_child(0)).map(), node);
    }

    void resolve_op2(const Node &node) {
        bind(ValueType::join(type(node.get_child(0)),
                             type(node.get_child(1))), node);
    }

    //-------------------------------------------------------------------------

    void visit(const Number &node) override {
        bind(ValueType::double_type(), node);
    }
    void visit(const Symbol &node) override {
        bind(param_type(node.id()), node, false);
    }
    void visit(const String &node) override {
        bind(ValueType::double_type(), node);
    }
    void visit(const In &node) override { resolve_op1(node); }
    void visit(const Neg &node) override { resolve_op1(node); }
    void visit(const Not &node) override { resolve_op1(node); }
    void visit(const If &node) override {
        bind(ValueType::either(type(node.true_expr()),
                               type(node.false_expr())), node);
    }
    void visit(const Error &node) override {
        bind(ValueType::error_type(), node, false);
    }
    void visit(const TensorMap &node) override { resolve_op1(node); }
    void visit(const TensorJoin &node) override { resolve_op2(node); }
    void visit(const TensorMerge &node) override {
        bind(ValueType::merge(type(node.get_child(0)),
                              type(node.get_child(1))), node);
    }
    void visit(const TensorReduce &node) override {
        auto my_type = type(node.get_child(0)).reduce(node.dimensions());
        if (my_type.is_error()) {
            auto str = fmt("aggr: %s, dimensions: [",
                           AggrNames::name_of(node.aggr())->c_str());
            size_t i = 0;
            for (const auto &dimension: node.dimensions()) {
                if (i++ > 0) {
                    str += ",";
                }
                str += dimension;
            }
            str += "]";
            fail(node, str);
        } else {
            bind(my_type, node);
        }
    }
    void visit(const TensorRename &node) override {
        auto my_type = type(node.get_child(0)).rename(node.from(), node.to());
        if (my_type.is_error()) {
            auto str = fmt("%s -> %s",
                           TensorRename::flatten(node.from()).c_str(),
                           TensorRename::flatten(node.to()).c_str());
            fail(node, str);
        } else {
            bind(my_type, node);
        }
    }
    void visit(const TensorConcat &node) override {
        bind(ValueType::concat(type(node.get_child(0)),
                               type(node.get_child(1)), node.dimension()), node);
    }
    void visit(const TensorCellCast &node) override {
        bind(type(node.get_child(0)).cell_cast(node.cell_type()), node);
    }
    void visit(const TensorCreate &node) override {
        for (size_t i = 0; i < node.num_children(); ++i) {
            if (!type(node.get_child(i)).is_double()) {
                return fail(node, fmt("non-double child at index %zu", i), false);
            }
        }
        bind(node.type(), node);
    }
    void visit(const TensorLambda &node) override {
        std::vector<ValueType> arg_types;
        for (const auto &dim: node.type().dimensions()) {
            (void) dim;
            arg_types.push_back(ValueType::double_type());
        }
        for (size_t binding: node.bindings()) {
            arg_types.push_back(param_type(binding));
        }
        NodeTypes lambda_types(node.lambda(), arg_types);
        const ValueType &lambda_type = lambda_types.get_type(node.lambda().root());
        if (!lambda_type.is_double()) {
            import_errors(lambda_types);
            return fail(node, fmt("lambda function has non-double result type: %s",
                                  lambda_type.to_spec().c_str()), false);
        }
        import_types(lambda_types);
        bind(node.type(), node);
    }
    void visit(const TensorPeek &node) override {
        const ValueType &param_type = type(node.param());
        std::vector<vespalib::string> dimensions;
        for (const auto &dim: node.dim_list()) {
            dimensions.push_back(dim.first);
            if (dim.second.is_expr()) {
                if (!type(*dim.second.expr).is_double()) {
                    return fail(node, fmt("non-double label expression for dimension %s", dim.first.c_str()));
                }
            } else {
                size_t dim_idx = param_type.dimension_index(dim.first);
                if (dim_idx == ValueType::Dimension::npos) {
                    return fail(node, fmt("dimension not in param: %s", dim.first.c_str()));
                }
                const auto &param_dim = param_type.dimensions()[dim_idx];
                if (param_dim.is_indexed()) {
                    if (!is_number(dim.second.label)) {
                        return fail(node, fmt("non-numeric label for dimension %s: '%s'",
                                        dim.first.c_str(), dim.second.label.c_str()));
                    }
                    if (as_number(dim.second.label) >= param_dim.size) {
                        return fail(node, fmt("out-of-bounds label for dimension %s: %s",
                                        dim.first.c_str(), dim.second.label.c_str()));
                    }
                }
            }
        }
        bind(param_type.peek(dimensions), node);
    }
    void visit(const Add &node) override { resolve_op2(node); }
    void visit(const Sub &node) override { resolve_op2(node); }
    void visit(const Mul &node) override { resolve_op2(node); }
    void visit(const Div &node) override { resolve_op2(node); }
    void visit(const Mod &node) override { resolve_op2(node); }
    void visit(const Pow &node) override { resolve_op2(node); }
    void visit(const Equal &node) override { resolve_op2(node); }
    void visit(const NotEqual &node) override { resolve_op2(node); }
    void visit(const Approx &node) override { resolve_op2(node); }
    void visit(const Less &node) override { resolve_op2(node); }
    void visit(const LessEqual &node) override { resolve_op2(node); }
    void visit(const Greater &node) override { resolve_op2(node); }
    void visit(const GreaterEqual &node) override { resolve_op2(node); }
    void visit(const And &node) override { resolve_op2(node); }
    void visit(const Or &node) override { resolve_op2(node); }
    void visit(const Cos &node) override { resolve_op1(node); }
    void visit(const Sin &node) override { resolve_op1(node); }
    void visit(const Tan &node) override { resolve_op1(node); }
    void visit(const Cosh &node) override { resolve_op1(node); }
    void visit(const Sinh &node) override { resolve_op1(node); }
    void visit(const Tanh &node) override { resolve_op1(node); }
    void visit(const Acos &node) override { resolve_op1(node); }
    void visit(const Asin &node) override { resolve_op1(node); }
    void visit(const Atan &node) override { resolve_op1(node); }
    void visit(const Exp &node) override { resolve_op1(node); }
    void visit(const Log10 &node) override { resolve_op1(node); }
    void visit(const Log &node) override { resolve_op1(node); }
    void visit(const Sqrt &node) override { resolve_op1(node); }
    void visit(const Ceil &node) override { resolve_op1(node); }
    void visit(const Fabs &node) override { resolve_op1(node); }
    void visit(const Floor &node) override { resolve_op1(node); }
    void visit(const Atan2 &node) override { resolve_op2(node); }
    void visit(const Ldexp &node) override { resolve_op2(node); }
    void visit(const Pow2 &node) override { resolve_op2(node); }
    void visit(const Fmod &node) override { resolve_op2(node); }
    void visit(const Min &node) override { resolve_op2(node); }
    void visit(const Max &node) override { resolve_op2(node); }
    void visit(const IsNan &node) override { resolve_op1(node); }
    void visit(const Relu &node) override { resolve_op1(node); }
    void visit(const Sigmoid &node) override { resolve_op1(node); }
    void visit(const Elu &node) override { resolve_op1(node); }
    void visit(const Erf &node) override { resolve_op1(node); }
    void visit(const Bit &node) override { resolve_op2(node); }
    void visit(const Hamming &node) override { resolve_op2(node); }

    //-------------------------------------------------------------------------

    bool open(const Node &) override {
        return true;
    }

    void close(const Node &node) override {
        if (!check_error(node)) {
            node.accept(*this);
        }
    }
};

TypeResolver::TypeResolver(const std::vector<ValueType> &params_in,
                           std::map<const Node *, ValueType> &type_map_out,
                           std::vector<vespalib::string> &errors_out)
    : state(params_in, type_map_out, errors_out)
{
}

TypeResolver::~TypeResolver() {}

struct TypeExporter : public NodeTraverser {
    const std::map<const Node *, ValueType> &parent_type_map;
    std::map<const Node *, ValueType> &exported_type_map;
    size_t missing_cnt;
    TypeExporter(const std::map<const Node *, ValueType> &parent_type_map_in,
                 std::map<const Node *, ValueType> &exported_type_map_out)
        : parent_type_map(parent_type_map_in),
          exported_type_map(exported_type_map_out),
          missing_cnt(0) {}
    bool open(const Node &node) override {
        if (auto lambda = as<TensorLambda>(node)) {
            lambda->lambda().root().traverse(*this);
        }
        return true;
    }
    void close(const Node &node) override {
        auto pos = parent_type_map.find(&node);
        if (pos != parent_type_map.end()) {
            exported_type_map.emplace(&node, pos->second);
        } else {
            ++missing_cnt;
        }
    }
};

} // namespace vespalib::eval::nodes::<unnamed>
} // namespace vespalib::eval::nodes

NodeTypes::NodeTypes()
    : _not_found(ValueType::error_type()),
      _type_map()
{
}

NodeTypes::NodeTypes(const nodes::Node &const_node)
    : _not_found(ValueType::error_type()),
      _type_map()
{
    std::vector<ValueType> no_input_types;
    nodes::TypeResolver resolver(no_input_types, _type_map, _errors);
    const_node.traverse(resolver);
}

NodeTypes::NodeTypes(const Function &function, const std::vector<ValueType> &input_types)
    : _not_found(ValueType::error_type()),
      _type_map()
{
    assert(input_types.size() == function.num_params());
    nodes::TypeResolver resolver(input_types, _type_map, _errors);
    function.root().traverse(resolver);
}

NodeTypes::~NodeTypes() = default;

NodeTypes
NodeTypes::export_types(const nodes::Node &root) const
{
    NodeTypes exported_types;
    nodes::TypeExporter exporter(_type_map, exported_types._type_map);
    root.traverse(exporter);
    if (exporter.missing_cnt > 0) {
        exported_types._errors.push_back(fmt("[export]: %zu nodes had missing types", exporter.missing_cnt));
    }
    return exported_types;
}

const ValueType &
NodeTypes::get_type(const nodes::Node &node) const
{
    auto pos = _type_map.find(&node);
    if (pos == _type_map.end()) {
        return _not_found;
    }
    return pos->second;
}

}