aboutsummaryrefslogtreecommitdiffstats
path: root/eval/src/vespa/eval/instruction/generic_lambda.cpp
blob: 637982fffc4123ad604ae3683eab99c2915719b9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "generic_lambda.h"
#include <vespa/eval/eval/llvm/compiled_function.h>
#include <vespa/eval/eval/llvm/compile_cache.h>
#include <vespa/vespalib/util/small_vector.h>

using namespace vespalib::eval::tensor_function;

namespace vespalib::eval::instruction {

using Instruction = InterpretedFunction::Instruction;
using State = InterpretedFunction::State;

namespace {

//-----------------------------------------------------------------------------

bool step_labels(double *labels, const ValueType &type) {
    for (size_t idx = type.dimensions().size(); idx-- > 0; ) {
        if ((labels[idx] += 1.0) < type.dimensions()[idx].size) {
            return true;
        } else {
            labels[idx] = 0.0;
        }
    }
    return false;
}

struct ParamProxy : public LazyParams {
    const SmallVector<double> &labels;
    const LazyParams          &params;
    const std::vector<size_t> &bindings;
    ParamProxy(const SmallVector<double> &labels_in, const LazyParams &params_in, const std::vector<size_t> &bindings_in)
        : labels(labels_in), params(params_in), bindings(bindings_in) {}
    const Value &resolve(size_t idx, Stash &stash) const override {
        if (idx < labels.size()) {
            return stash.create<DoubleValue>(labels[idx]);
        }
        return params.resolve(bindings[idx - labels.size()], stash);
    }
};

//-----------------------------------------------------------------------------

struct CompiledParams {
    const ValueType &result_type;
    const std::vector<size_t> &bindings;
    size_t num_cells;
    CompileCache::Token::UP token;
    CompiledParams(const Lambda &lambda) 
        : result_type(lambda.result_type()),
          bindings(lambda.bindings()),
          num_cells(result_type.dense_subspace_size()),
          token(CompileCache::compile(lambda.lambda(), PassParams::ARRAY))
    {
        assert(lambda.lambda().num_params() == (result_type.dimensions().size() + bindings.size()));
    }
};

template <typename CT>
void my_compiled_lambda_op(InterpretedFunction::State &state, uint64_t param) {
    const CompiledParams &params = unwrap_param<CompiledParams>(param);
    SmallVector<double> args(params.result_type.dimensions().size() + params.bindings.size(), 0.0);
    double *bind_next = &args[params.result_type.dimensions().size()];
    for (size_t binding: params.bindings) {
        *bind_next++ = state.params->resolve(binding, state.stash).as_double();
    }
    auto fun = params.token->get().get_function();
    ArrayRef<CT> dst_cells = state.stash.create_uninitialized_array<CT>(params.num_cells);
    CT *dst = &dst_cells[0];
    do {
        *dst++ = fun(&args[0]);
    } while (step_labels(&args[0], params.result_type));
    state.stack.push_back(state.stash.create<DenseValueView>(params.result_type, TypedCells(dst_cells)));
}

struct MyCompiledLambdaOp {
    template <typename CT>
    static auto invoke() { return my_compiled_lambda_op<CT>; }
};

//-----------------------------------------------------------------------------

struct InterpretedParams {
    const ValueType &result_type;
    const std::vector<size_t> &bindings;
    size_t num_cells;
    InterpretedFunction fun;
    InterpretedParams(const Lambda &lambda, const ValueBuilderFactory &factory, CTFMetaData *meta)
        : result_type(lambda.result_type()),
          bindings(lambda.bindings()),
          num_cells(result_type.dense_subspace_size()),
          fun(InterpretedFunction::opts(factory).meta(meta), lambda.lambda().root(), lambda.types())
    {
        assert(lambda.lambda().num_params() == (result_type.dimensions().size() + bindings.size()));
    }
};

template <typename CT>
void my_interpreted_lambda_op(InterpretedFunction::State &state, uint64_t param) {
    const InterpretedParams &params = unwrap_param<InterpretedParams>(param);
    SmallVector<double> labels(params.result_type.dimensions().size(), 0.0);
    ParamProxy param_proxy(labels, *state.params, params.bindings);
    InterpretedFunction::Context ctx(params.fun);
    ArrayRef<CT> dst_cells = state.stash.create_uninitialized_array<CT>(params.num_cells);
    CT *dst = &dst_cells[0];
    do {
        *dst++ = params.fun.eval(ctx, param_proxy).as_double();
    } while (step_labels(&labels[0], params.result_type));
    state.stack.push_back(state.stash.create<DenseValueView>(params.result_type, TypedCells(dst_cells)));
}

struct MyInterpretedLambdaOp {
    template <typename CT>
    static auto invoke() { return my_interpreted_lambda_op<CT>; }
};

//-----------------------------------------------------------------------------

} // namespace <unnamed>

Instruction
GenericLambda::make_instruction(const tensor_function::Lambda &lambda_in,
                                const ValueBuilderFactory &factory, Stash &stash,
                                CTFMetaData *meta)
{
    const ValueType & result_type = lambda_in.result_type();
    assert(result_type.count_mapped_dimensions() == 0);
    if (!CompiledFunction::detect_issues(lambda_in.lambda()) &&
        lambda_in.types().all_types_are_double())
    {
        // can do compiled version
        CompiledParams &params = stash.create<CompiledParams>(lambda_in);
        auto op = typify_invoke<1,TypifyCellType,MyCompiledLambdaOp>(result_type.cell_type());
        return Instruction(op, wrap_param<CompiledParams>(params));
    } else {
        InterpretedParams &params = stash.create<InterpretedParams>(lambda_in, factory, meta);
        auto op = typify_invoke<1,TypifyCellType,MyInterpretedLambdaOp>(result_type.cell_type());
        return Instruction(op, wrap_param<InterpretedParams>(params));
    }
}

} // namespace