aboutsummaryrefslogtreecommitdiffstats
path: root/eval/src/vespa/eval/onnx/onnx_wrapper.cpp
blob: 5457a3a1d1c232e8d44b30b1580147e9e34a75f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "onnx_wrapper.h"
#include <vespa/eval/eval/cell_type.h>
#include <vespa/eval/eval/dense_cells_value.h>
#include <vespa/eval/eval/value_type.h>
#include <vespa/vespalib/util/arrayref.h>
#include <vespa/vespalib/util/stringfmt.h>
#include <vespa/vespalib/util/typify.h>
#include <vespa/vespalib/util/classname.h>
#include <type_traits>

#include <vespa/log/log.h>
LOG_SETUP(".eval.onnx_wrapper");

using vespalib::ArrayRef;
using vespalib::ConstArrayRef;

using vespalib::make_string_short::fmt;

// as documented in onnxruntime_cxx_api.h :
namespace Ort {
template <>
struct TypeToTensorType<vespalib::BFloat16> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16; };
template <>
struct TypeToTensorType<vespalib::eval::Int8Float> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8; };
}

namespace vespalib::eval {

namespace {

struct TypifyOnnxElementType {
    template <typename T> using Result = TypifyResultType<T>;
    template <typename F> static decltype(auto) resolve(Onnx::ElementType value, F &&f) {
        switch(value) {
        case Onnx::ElementType::INT8:     return f(Result<Int8Float>());
        case Onnx::ElementType::INT16:    return f(Result<int16_t>());
        case Onnx::ElementType::INT32:    return f(Result<int32_t>());
        case Onnx::ElementType::INT64:    return f(Result<int64_t>());
        case Onnx::ElementType::UINT8:    return f(Result<uint8_t>());
        case Onnx::ElementType::UINT16:   return f(Result<uint16_t>());
        case Onnx::ElementType::UINT32:   return f(Result<uint32_t>());
        case Onnx::ElementType::UINT64:   return f(Result<uint64_t>());
        case Onnx::ElementType::BFLOAT16: return f(Result<BFloat16>());
        case Onnx::ElementType::FLOAT:    return f(Result<float>());
        case Onnx::ElementType::DOUBLE:   return f(Result<double>());
        }
        abort();
    }
};

using MyTypify = TypifyValue<TypifyCellType,TypifyOnnxElementType>;

//-----------------------------------------------------------------------------

struct TypeToString {
    template <typename T> static vespalib::string invoke() { return getClassName<T>(); }
};

struct IsSameType {
    template <typename A, typename B> static bool invoke() { return std::is_same<A,B>(); }
};

struct CreateOnnxTensor {
    template <typename T> static Ort::Value invoke(const std::vector<int64_t> &sizes, OrtAllocator *alloc) {
        return Ort::Value::CreateTensor<T>(alloc, sizes.data(), sizes.size());
    }
    Ort::Value operator()(const Onnx::TensorType &type, OrtAllocator *alloc) {
        return typify_invoke<1,MyTypify,CreateOnnxTensor>(type.elements, type.dimensions, alloc);
    }
};

struct CreateEmptyOnnxTensor {
    template <typename T> static Ort::Value invoke(const std::vector<int64_t> &sizes, size_t num_cells, OrtAllocator *alloc) {
        auto value = Ort::Value::CreateTensor<T>(alloc, sizes.data(), sizes.size());
        T *cells = value.template GetTensorMutableData<T>();
        for (size_t i = 0; i < num_cells; ++i) {
            cells[i] = T{};
        }
        return value;
    }
    Ort::Value operator()(Onnx::ElementType elements, const std::vector<int64_t> &sizes, size_t num_cells, OrtAllocator *alloc) {
        return typify_invoke<1,MyTypify,CreateEmptyOnnxTensor>(elements, sizes, num_cells, alloc);
    }
};
CreateEmptyOnnxTensor create_empty_onnx_tensor;

struct CreateVespaTensorRef {
    template <typename T> static Value::UP invoke(const ValueType &type_ref, Ort::Value &value) {
        size_t num_cells = type_ref.dense_subspace_size();
        ConstArrayRef<T> cells(value.GetTensorMutableData<T>(), num_cells);
        return std::make_unique<DenseValueView>(type_ref, TypedCells(cells));
    }
    Value::UP operator()(const ValueType &type_ref, Ort::Value &value) {
        return typify_invoke<1,MyTypify,CreateVespaTensorRef>(type_ref.cell_type(), type_ref, value);
    }
};

struct CreateVespaTensor {
    template <typename T> static Value::UP invoke(const ValueType &type) {
        size_t num_cells = type.dense_subspace_size();
        std::vector<T> cells(num_cells, T{});
        return std::make_unique<DenseCellsValue<T>>(type, std::move(cells));
    }
    Value::UP operator()(const ValueType &type) {
        return typify_invoke<1,MyTypify,CreateVespaTensor>(type.cell_type(), type);
    }
};

struct ClearVespaTensor {
    template <typename CT> static void invoke(const Value &value) {
        auto cells = unconstify(value.cells().typify<CT>());
        std::fill(cells.begin(), cells.end(), CT{});
    }
    void operator()(const Value &value) {
        return typify_invoke<1,TypifyCellType,ClearVespaTensor>(value.type().cell_type(), value);
    }
};
ClearVespaTensor clear_vespa_tensor;

//-----------------------------------------------------------------------------

template <typename E> vespalib::string type_name(E enum_value) {
    return typify_invoke<1,MyTypify,TypeToString>(enum_value);
}

template <typename E1, typename E2> bool is_same_type(E1 e1, E2 e2) {
    return typify_invoke<2,MyTypify,IsSameType>(e1, e2);
}

//-----------------------------------------------------------------------------

auto convert_optimize(Onnx::Optimize optimize) {
    switch (optimize) {
    case Onnx::Optimize::ENABLE:  return ORT_ENABLE_ALL;
    case Onnx::Optimize::DISABLE: return ORT_DISABLE_ALL;
    }
    abort();
}

Onnx::ElementType make_element_type(ONNXTensorElementDataType element_type) {
    switch (element_type) {
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8:     return Onnx::ElementType::INT8;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16:    return Onnx::ElementType::INT16;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:    return Onnx::ElementType::INT32;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64:    return Onnx::ElementType::INT64;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8:    return Onnx::ElementType::UINT8;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16:   return Onnx::ElementType::UINT16;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32:   return Onnx::ElementType::UINT32;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64:   return Onnx::ElementType::UINT64;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16: return Onnx::ElementType::BFLOAT16;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT:    return Onnx::ElementType::FLOAT;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE:   return Onnx::ElementType::DOUBLE;
    default:
        throw Ort::Exception(fmt("[onnx wrapper] unsupported element type: %d", element_type), ORT_FAIL);
    }
}

//-----------------------------------------------------------------------------

class OnnxString {
private:
    static Ort::AllocatorWithDefaultOptions _alloc;
    Ort::AllocatedStringPtr _str;
    OnnxString(Ort::AllocatedStringPtr str) : _str(std::move(str)) {}
public:
    OnnxString(const OnnxString &rhs) = delete;
    OnnxString &operator=(const OnnxString &rhs) = delete;
    OnnxString(OnnxString &&rhs) noexcept = default;
    OnnxString &operator=(OnnxString &&rhs) noexcept = default;
    const char *get() const { return _str.get(); }
    ~OnnxString() = default;
    static OnnxString get_input_name(const Ort::Session &session, size_t idx) {
        return {session.GetInputNameAllocated(idx, _alloc)};
    }
    static OnnxString get_output_name(const Ort::Session &session, size_t idx) {
        return {session.GetOutputNameAllocated(idx, _alloc)};
    }
};
Ort::AllocatorWithDefaultOptions OnnxString::_alloc;

std::vector<Onnx::DimSize> make_dimensions(const Ort::ConstTensorTypeAndShapeInfo &tensor_info) {
    std::vector<const char *> symbolic_sizes(tensor_info.GetDimensionsCount(), nullptr);
    tensor_info.GetSymbolicDimensions(symbolic_sizes.data(), symbolic_sizes.size());
    auto shape = tensor_info.GetShape();
    std::vector<Onnx::DimSize> result;
    for (size_t i = 0; i < shape.size(); ++i) {
        if (shape[i] > 0) {
            result.emplace_back(shape[i]);
        } else if (symbolic_sizes[i] != nullptr) {
            result.emplace_back(vespalib::string(symbolic_sizes[i]));
        } else {
            result.emplace_back();
        }
    }
    return result;
}

Onnx::TensorInfo make_tensor_info(const OnnxString &name, const Ort::TypeInfo &type_info) {
    auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
    auto element_type = tensor_info.GetElementType();
    return Onnx::TensorInfo{vespalib::string(name.get()), make_dimensions(tensor_info), make_element_type(element_type)};
}

Onnx::TensorType get_type_of(const Ort::Value &value) {
    auto tensor_info = value.GetTensorTypeAndShapeInfo();
    auto element_type = tensor_info.GetElementType();
    auto shape = tensor_info.GetShape();
    for (int64_t dim_size: shape) {
        if (dim_size < 1) {
            throw Ort::Exception("[onnx wrapper] actual value has unknown dimension size", ORT_FAIL);
        }
    }
    return {make_element_type(element_type), shape};
}

std::vector<int64_t> extract_sizes(const ValueType &type) {
    std::vector<int64_t> sizes;
    for (const auto &dim: type.dimensions()) {
        sizes.push_back(dim.size);
    }
    return sizes;
}

} // <unnamed>

vespalib::string
Onnx::DimSize::as_string() const
{
    if (is_known()) {
        return fmt("[%zu]", value);
    } else if (is_symbolic()) {
        return fmt("[%s]", name.c_str());
    } else {
        return "[]";
    }
}

vespalib::string
Onnx::TensorInfo::type_as_string() const
{
    vespalib::string res = type_name(elements);
    for (const auto &dim: dimensions) {
        res += dim.as_string();
    }
    return res;
}

Onnx::TensorInfo::~TensorInfo() = default;

vespalib::string
Onnx::TensorType::type_as_string() const
{
    vespalib::string res = type_name(elements);
    for (const auto &size: dimensions) {
        res += DimSize(size).as_string();
    }
    return res;
}

//-----------------------------------------------------------------------------

Onnx::WireInfo::~WireInfo() = default;

bool
Onnx::WirePlanner::need_model_probe(const Onnx &model) const
{
    for (const auto &output: model.outputs()) {
        for (const auto &dim: output.dimensions) {
            if (dim.is_symbolic()) {
                if (_symbolic_sizes.find(dim.name) == _symbolic_sizes.end()) {
                    // symbolic output dimension with unknown size
                    return true;
                }
            } else if (dim.value == 0) {
                // non-symbolic output dimension with unknown size
                return true;
            }
        }
    }
    return false;
}

void
Onnx::WirePlanner::do_model_probe(const Onnx &model)
{
    try {
        std::vector<Ort::Value> param_values;
        param_values.reserve(model.inputs().size());
        for (const auto &input: model.inputs()) {
            const auto &pos = _input_types.find(input.name);
            assert(pos != _input_types.end());
            auto vespa_type = pos->second;
            auto sizes = extract_sizes(vespa_type);
            size_t num_cells = vespa_type.dense_subspace_size();
            param_values.push_back(create_empty_onnx_tensor(input.elements, sizes, num_cells, _alloc));
        }
        std::vector<Ort::Value> result_values;
        result_values.reserve(model.outputs().size());
        for (size_t i = 0; i < model.outputs().size(); ++i) {
            result_values.emplace_back(nullptr);
        }
        Ort::RunOptions run_opts(nullptr);
        auto &session = const_cast<Ort::Session&>(model._session);
        session.Run(run_opts,
                    model._input_name_refs.data(), param_values.data(), param_values.size(),
                    model._output_name_refs.data(), result_values.data(), result_values.size());
        for (size_t i = 0; i < model.outputs().size(); ++i) {
            _output_types.emplace(model.outputs()[i].name, get_type_of(result_values[i]));
        }
    } catch (const Ort::Exception &ex) {
        _output_types.clear();
        LOG(warning, "model probe failed: %s", ex.what());
    }
}

Onnx::WirePlanner::~WirePlanner() = default;

CellType
Onnx::WirePlanner::best_cell_type(Onnx::ElementType type)
{
    switch (type) {
    case Onnx::ElementType::INT8:     return CellType::INT8;
    case Onnx::ElementType::BFLOAT16: return CellType::BFLOAT16;
    case Onnx::ElementType::UINT8:    [[fallthrough]];
    case Onnx::ElementType::INT16:    [[fallthrough]];
    case Onnx::ElementType::UINT16:   [[fallthrough]];
    case Onnx::ElementType::FLOAT:    return CellType::FLOAT;
    case Onnx::ElementType::INT32:    [[fallthrough]];
    case Onnx::ElementType::INT64:    [[fallthrough]];
    case Onnx::ElementType::UINT32:   [[fallthrough]];
    case Onnx::ElementType::UINT64:   [[fallthrough]];
    case Onnx::ElementType::DOUBLE:   return CellType::DOUBLE;
    }
    abort();
}

bool
Onnx::WirePlanner::bind_input_type(const ValueType &vespa_in, const TensorInfo &onnx_in)
{
    const auto &type = vespa_in;
    const auto &name = onnx_in.name;
    const auto &dimensions = onnx_in.dimensions;
    if (type.dimensions().size() != dimensions.size()) {
        return false;
    }
    for (size_t i = 0; i < dimensions.size(); ++i) {
        if (dimensions[i].is_known()) {
            if (dimensions[i].value != type.dimensions()[i].size) {
                return false;
            }
        } else {
            if (dimensions[i].is_symbolic()) {
                auto &bound_size = _symbolic_sizes[dimensions[i].name];
                if (bound_size == 0) {
                    bound_size = type.dimensions()[i].size;
                } else if (bound_size != type.dimensions()[i].size) {
                    return false;
                }
            }
        }
    }
    _input_types.emplace(name, type);
    return true;
}

std::map<vespalib::string,size_t>
Onnx::WirePlanner::get_bound_sizes(const TensorInfo &onnx_in) const
{
    std::map<vespalib::string,size_t> result;
    for (const auto &dim: onnx_in.dimensions) {
        if (dim.is_symbolic()) {
            auto pos = _symbolic_sizes.find(dim.name);
            if (pos != _symbolic_sizes.end()) {
                assert(pos->second != 0);
                result.emplace(dim.name, pos->second);
            }
        }
    }
    return result;
}

void
Onnx::WirePlanner::prepare_output_types(const Onnx &model)
{
    if (need_model_probe(model)) {
        do_model_probe(model);
    }
}

ValueType
Onnx::WirePlanner::make_output_type(const TensorInfo &onnx_out) const
{
    const auto &dimensions = onnx_out.dimensions;
    const auto &elements = onnx_out.elements;
    auto probed = _output_types.find(onnx_out.name);
    std::vector<ValueType::Dimension> dim_list;
    for (size_t i = 0; i < dimensions.size(); ++i) {
        const auto &dim = dimensions[i];
        size_t dim_size = dim.value;
        if (dim.is_symbolic()) {
            auto pos = _symbolic_sizes.find(dim.name);
            if (pos != _symbolic_sizes.end()) {
                dim_size = pos->second;
            }
        }
        if (probed != _output_types.end()) {
            const auto &type = probed->second;
            if (type.dimensions.size() != dimensions.size()) {
                LOG(warning, "probed output '%s' does not have the same number of dimensions as "
                    "the output declared by the model (probed: %zu, declared: %zu)", onnx_out.name.c_str(),
                    type.dimensions.size(), dimensions.size());
                return ValueType::error_type();
            }
            size_t probed_size = type.dimensions[i];
            if (dim_size == 0) {
                dim_size = probed_size;
            } else if (probed_size != dim_size) {
                LOG(warning, "probed dimension size for output '%s' dimension %zu does not match symbolic "
                    "dimension size inferred from inputs (probed: %zu, inferred: %zu)", onnx_out.name.c_str(),
                    i, probed_size, dim_size);
                return ValueType::error_type();
            }
        }
        if ((dim_size == 0) || (dim_list.size() > 9)) {
            return ValueType::error_type();
        }
        dim_list.emplace_back(fmt("d%zu", dim_list.size()), dim_size);
    }
    return ValueType::make_type(best_cell_type(elements), std::move(dim_list));
}

Onnx::WireInfo
Onnx::WirePlanner::get_wire_info(const Onnx &model) const
{
    WireInfo info;
    for (const auto &input: model.inputs()) {
        const auto &pos = _input_types.find(input.name);
        assert(pos != _input_types.end());
        auto vespa_type = pos->second;
        info.onnx_inputs.emplace_back(input.elements, extract_sizes(vespa_type));
        info.vespa_inputs.push_back(std::move(vespa_type));
        if (!is_same_type(info.vespa_inputs.back().cell_type(),
                          info.onnx_inputs.back().elements))
        {
            LOG(warning, "input '%s' with element type '%s' is bound to vespa value with cell type '%s'; "
                "adding explicit conversion step (this conversion might be lossy)",
                input.name.c_str(), type_name(info.onnx_inputs.back().elements).c_str(),
                type_name(info.vespa_inputs.back().cell_type()).c_str());
        }
    }
    for (const auto &output: model.outputs()) {
        auto vespa_type = make_output_type(output);
        info.onnx_outputs.emplace_back(output.elements, extract_sizes(vespa_type));
        info.vespa_outputs.push_back(std::move(vespa_type));
        if (!is_same_type(info.vespa_outputs.back().cell_type(),
                          info.onnx_outputs.back().elements))
        {
            LOG(warning, "output '%s' with element type '%s' is bound to vespa value with cell type '%s'; "
                "adding explicit conversion step (this conversion might be lossy)",
                output.name.c_str(), type_name(info.onnx_outputs.back().elements).c_str(),
                type_name(info.vespa_outputs.back().cell_type()).c_str());
        }
    }
    return info;
}

//-----------------------------------------------------------------------------

template <typename T>
void
Onnx::EvalContext::adapt_param(EvalContext &self, size_t idx, const Value &param)
{
    const auto &cells_ref = param.cells();
    auto cells = unconstify(cells_ref.typify<T>());
    const auto &sizes = self._wire_info.onnx_inputs[idx].dimensions;
    self._param_values[idx] = Ort::Value::CreateTensor<T>(self._cpu_memory, cells.begin(), cells.size(), sizes.data(), sizes.size());
}

template <typename SRC, typename DST>
void
Onnx::EvalContext::convert_param(EvalContext &self, size_t idx, const Value &param)
{
    auto cells = param.cells().typify<SRC>();
    size_t n = cells.size();
    const SRC *src = cells.begin();
    DST *dst = self._param_values[idx].GetTensorMutableData<DST>();
    for (size_t i = 0; i < n; ++i) {
        dst[i] = DST(src[i]);
    }
}

template <typename SRC, typename DST>
void
Onnx::EvalContext::convert_result(EvalContext &self, size_t idx)
{
    const auto &cells_ref = (*self._results[idx]).cells();
    auto cells = unconstify(cells_ref.typify<DST>());
    size_t n = cells.size();
    DST *dst = cells.begin();
    const SRC *src = self._result_values[idx].GetTensorMutableData<SRC>();
    for (size_t i = 0; i < n; ++i) {
        dst[i] = DST(src[i]);
    }
}

struct Onnx::EvalContext::SelectAdaptParam {
    template <typename ...Ts> static auto invoke() { return adapt_param<Ts...>; }
    auto operator()(CellType ct) {
        return typify_invoke<1,MyTypify,SelectAdaptParam>(ct);
    }
};

struct Onnx::EvalContext::SelectConvertParam {
    template <typename ...Ts> static auto invoke() { return convert_param<Ts...>; }
    auto operator()(CellType ct, Onnx::ElementType et) {
        return typify_invoke<2,MyTypify,SelectConvertParam>(ct, et);
    }
};

struct Onnx::EvalContext::SelectConvertResult {
    template <typename ...Ts> static auto invoke() { return convert_result<Ts...>; }
    auto operator()(Onnx::ElementType et, CellType ct) {
        return typify_invoke<2,MyTypify,SelectConvertResult>(et, ct);
    }
};

//-----------------------------------------------------------------------------

Onnx::EvalContext::EvalContext(const Onnx &model, const WireInfo &wire_info)
    : _model(model),
      _wire_info(wire_info),
      _cpu_memory(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault)),
      _param_values(),
      _result_values(),
      _results(),
      _param_binders(),
      _result_converters()
{
    assert(_wire_info.vespa_inputs.size()  == _model.inputs().size());
    assert(_wire_info.onnx_inputs.size()   == _model.inputs().size());
    assert(_wire_info.onnx_outputs.size()  == _model.outputs().size());
    assert(_wire_info.vespa_outputs.size() == _model.outputs().size());
    _param_values.reserve(_model.inputs().size());
    _result_values.reserve(_model.outputs().size());
    _results.reserve(_model.outputs().size());
    auto result_guard = _result_values.begin();
    for (size_t i = 0; i < _model.inputs().size(); ++i) {
        const auto &vespa = _wire_info.vespa_inputs[i];
        const auto &onnx = _wire_info.onnx_inputs[i];
        if (is_same_type(vespa.cell_type(), onnx.elements)) {
            _param_values.emplace_back(nullptr);
            _param_binders.push_back(SelectAdaptParam()(vespa.cell_type()));
        } else {
            _param_values.push_back(CreateOnnxTensor()(onnx, _alloc));
            _param_binders.push_back(SelectConvertParam()(vespa.cell_type(), onnx.elements));
        }
    }
    for (size_t i = 0; i < _model.outputs().size(); ++i) {
        const auto &vespa = _wire_info.vespa_outputs[i];
        const auto &onnx = _wire_info.onnx_outputs[i];
        _result_values.push_back(CreateOnnxTensor()(onnx, _alloc));
        if (is_same_type(vespa.cell_type(), onnx.elements)) {
            _results.push_back(CreateVespaTensorRef()(vespa, _result_values.back()));
        } else {
            _results.push_back(CreateVespaTensor()(vespa));
            _result_converters.emplace_back(i, SelectConvertResult()(onnx.elements, vespa.cell_type()));
        }
    }
    // make sure references to Ort::Value inside _result_values are safe
    assert(result_guard == _result_values.begin());
}

Onnx::EvalContext::~EvalContext() = default;

void
Onnx::EvalContext::bind_param(size_t i, const Value &param)
{
    _param_binders[i](*this, i, param);
}

void
Onnx::EvalContext::eval()
{
    auto &session = const_cast<Ort::Session&>(_model._session);
    Ort::RunOptions run_opts(nullptr);
    session.Run(run_opts,
                _model._input_name_refs.data(), _param_values.data(), _param_values.size(),
                _model._output_name_refs.data(), _result_values.data(), _result_values.size());
    for (const auto &entry: _result_converters) {
        entry.second(*this, entry.first);
    }
}

void
Onnx::EvalContext::clear_results()
{
    for (const Value::UP &result: _results) {
        clear_vespa_tensor(*result);
    }
}

const Value &
Onnx::EvalContext::get_result(size_t i) const
{
    return *_results[i];
}

//-----------------------------------------------------------------------------

Ort::AllocatorWithDefaultOptions Onnx::_alloc;

Onnx::Shared::Shared()
    : _env(ORT_LOGGING_LEVEL_WARNING, "vespa-onnx-wrapper")
{
}

Onnx::Shared &
Onnx::Shared::get() {
    static Shared shared;
    return shared;
}

//-----------------------------------------------------------------------------

void
Onnx::extract_meta_data()
{
    Ort::AllocatorWithDefaultOptions allocator;
    size_t num_inputs = _session.GetInputCount();
    for (size_t i = 0; i < num_inputs; ++i) {
        _inputs.push_back(make_tensor_info(OnnxString::get_input_name(_session, i), _session.GetInputTypeInfo(i)));
        if (_inputs.back().dimensions.empty()) {
            throw Ort::Exception(fmt("[onnx wrapper] input '%s' has unspecified type, this is not supported", _inputs.back().name.c_str()), ORT_FAIL);
        }
    }
    size_t num_outputs = _session.GetOutputCount();
    for (size_t i = 0; i < num_outputs; ++i) {
        _outputs.push_back(make_tensor_info(OnnxString::get_output_name(_session, i), _session.GetOutputTypeInfo(i)));
        if (_outputs.back().dimensions.empty()) {
            throw Ort::Exception(fmt("[onnx wrapper] output '%s' has unspecified type, this is not supported", _outputs.back().name.c_str()), ORT_FAIL);
        }
    }
    for (const auto &input: _inputs) {
        _input_name_refs.push_back(input.name.c_str());
    }
    for (const auto &output: _outputs) {
        _output_name_refs.push_back(output.name.c_str());
    }
}

Onnx::Onnx(const vespalib::string &model_file, Optimize optimize)
    : _shared(Shared::get()),
      _options(),
      _session(nullptr),
      _inputs(),
      _outputs(),
      _input_name_refs(),
      _output_name_refs()
{
    _options.SetIntraOpNumThreads(1);
    _options.SetInterOpNumThreads(1);
    _options.SetGraphOptimizationLevel(convert_optimize(optimize));
    _options.DisableCpuMemArena();
    _session = Ort::Session(_shared.env(), model_file.c_str(), _options);
    extract_meta_data();
}

Onnx::~Onnx() = default;

}