aboutsummaryrefslogtreecommitdiffstats
path: root/fnet/src/tests/scheduling/schedule.cpp
blob: 88b84bec67a62fe4fd8b544afbd458a40c72c915 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
#include <vespa/vespalib/testkit/test_kit.h>
#include <vespa/fnet/scheduler.h>
#include <vespa/fnet/task.h>

using vespalib::steady_clock;
using vespalib::steady_time;
using ms_double = std::chrono::duration<double, std::milli>;

steady_time _time;
FNET_Scheduler *_scheduler;

template <class Rep, class Period>
int as_ms(std::chrono::duration<Rep,Period> duration) {
    return std::chrono::duration_cast<std::chrono::milliseconds>(duration).count();
}

template <class Clock, class Duration>
int as_ms(std::chrono::time_point<Clock,Duration> time) {
    return as_ms(time.time_since_epoch());
}

class MyTask : public FNET_Task
{
public:
  steady_time _time;
  int         _target;
  bool        _done;

  explicit MyTask(int target)
    : FNET_Task(::_scheduler),
      _time(),
      _target(target),
      _done(false) {}

  int GetTarget() const { return _target; }

  bool Check() const
  {
    int a = _target;
    int b = as_ms(_time);

    if (!_done)
      return false;

    if (b < a)
      return false;

    if ((b - a) > (3 * vespalib::count_ms(FNET_Scheduler::tick_ms)))
      return false;

    return true;
  }

  void PerformTask() override
  {
    _time = ::_time;
    _done = true;
  }
};


class RealTimeTask : public FNET_Task
{
public:
  uint32_t _cnt;

  RealTimeTask() : FNET_Task(::_scheduler), _cnt(0)
  {
  }

  uint32_t GetCnt() { return _cnt; }

  void PerformTask() override
  {
    _cnt++;
    ScheduleNow(); // re-schedule as fast as possible
  }
};


TEST("schedule") {
  _time = steady_time(vespalib::duration::zero());
  _scheduler = new FNET_Scheduler(&_time);

  RealTimeTask rt_task1;
  RealTimeTask rt_task2;
  RealTimeTask rt_task3;
  rt_task1.ScheduleNow();
  rt_task2.ScheduleNow();
  rt_task3.ScheduleNow();

  uint32_t   taskCnt = 1000000;
  MyTask   **tasks   = new MyTask*[taskCnt];
  assert(tasks != nullptr);
  for (uint32_t i = 0; i < taskCnt; i++) {
    tasks[i] = new MyTask(rand() & 131071);
    assert(tasks[i] != nullptr);
  }

  steady_time start;
  ms_double  ms;

  start = steady_clock::now();
  for (uint32_t j = 0; j < taskCnt; j++) {
    tasks[j]->Schedule(tasks[j]->GetTarget() / 1000.0);
  }
  ms = (steady_clock::now() - start);
  double scheduleTime = ms.count() / (double)taskCnt;
  fprintf(stderr, "scheduling cost: %1.2f microseconds\n", scheduleTime * 1000.0);

  start = steady_clock::now();
  uint32_t tickCnt = 0;
  while (as_ms(_time) < 135000.0) {
    _time += FNET_Scheduler::tick_ms;
    _scheduler->CheckTasks();
    tickCnt++;
  }
  ms = (steady_clock::now() - start);
  fprintf(stderr, "3 RT tasks + %d one-shot tasks over 135s\n", taskCnt);
  fprintf(stderr, "%1.2f seconds actual run time\n", ms.count() / 1000.0);
  fprintf(stderr, "%1.2f tasks per simulated second\n", (double)taskCnt / (double)135);
  fprintf(stderr, "%d ticks\n", tickCnt);
  fprintf(stderr, "%1.2f %% simulated CPU usage\n", 100 * (ms.count() / 135000.0));
  fprintf(stderr, "%1.2f microseconds per performed task\n",
          1000.0 * (ms.count() / (taskCnt + tickCnt * 3.0)));

  for (uint32_t k = 0; k < taskCnt; k++) {
    EXPECT_TRUE(tasks[k]->Check());
  }
  EXPECT_TRUE(rt_task1.GetCnt() == tickCnt);
  EXPECT_TRUE(rt_task2.GetCnt() == tickCnt);
  EXPECT_TRUE(rt_task3.GetCnt() == tickCnt);

  for (uint32_t l = 0; l < taskCnt; l++) {
    delete tasks[l];
  }
  rt_task1.Kill();
  rt_task2.Kill();
  rt_task3.Kill();
  delete [] tasks;
  delete _scheduler;

  { // trigger warning from scheduler destructor

      FNET_Scheduler *s = new FNET_Scheduler();

      FNET_Task t1(s);
      FNET_Task t2(s);
      FNET_Task t3(s);
      FNET_Task t4(s);
      FNET_Task t5(s);

      t1.ScheduleNow();
      t2.Schedule(5.0);
      t3.Schedule(5.0);
      t4.Schedule(10.0);
      t5.Schedule(15.0);

      delete s;
  }
}

TEST_MAIN() { TEST_RUN_ALL(); }