aboutsummaryrefslogtreecommitdiffstats
path: root/fsa/src/libfsa/automaton-alternate.h
blob: c23666886ff0d7956e1bbaa0a52c1fd0bb204075 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
/**
 * @author  Peter Boros
 * @date    2004/08/20
 * @file    automaton.h
 * @brief   Definition of the classes used for %FSA (%Finite %State %Automaton) construction
 *
 */

#pragma once

#include <map>
#include <list>
#include <string>
#include <vector>
#include <cassert>
#include <sys/mman.h> // for mmap() etc

#include "blob.h"
#include "fsa.h"

namespace fsa {


// {{{ Automaton
/**
 * @class Automaton
 * @brief %FSA (%Finite %State %Automaton) construction class.
 *
 * The Automaton class provides the methods and data structures needed
 * for construcing a %Finite %State %Automaton from input strings. (The
 * current implementation requires the input to be sorted, this
 * requirement may be relaxed in future releases.)
 *
 * The constructed %FSA, when stored in a compact representation, can
 * be used for lookups, etc. vie the FSA class. The compact %FSA can
 * not be modified anymore.
 */
class Automaton {

public:
  /**
   * Empty data item for final states without assigned data. Contains
   * a zero terminated empty string.
   */
  static const Blob EMPTY_BLOB;

private:

  class State;

  // {{{ Automaton::Transition
  /**
   * @struct Transition
   * @brief Struct for storing a single transition.
   *
   * A transition consists of an input symbol and a new state.
   */
  struct Transition {
    symbol_t  _symbol;  /**< Input symbol. */
    State    *_state;   /**< New state.    */
  };
  // }}}

  // {{{ Automaton::TransitionList
  /**
   * @class TransitionList
   * @brief Class representing all transitions from a state.
   *
   * This class is used for the internal representation of the
   * automaton.  A state can be represented by the list of all
   * possible transitions from that state. Two states are
   * equivalent, if both are final (with the same meta info) or both
   * are not final, and their transition list matches, that is they
   * have the same number of out-transitions, these correspond to the
   * same set of input symbols, and for each of these symbols the new
   * states are equal. In the internal representation, final states
   * are implemented by means of a special transition, so transition
   * list equivalence is implies state equivalence.
   */
  class TransitionList {

    friend class State;

  private:
    Transition*  _trans;  /**< Transition array.                       */
    unsigned int _size;   /**< Used size.                              */

  public:
    /**
     * @brief Constructor.
     *
     * Default constructor, creates an empty transition list.
     */
    TransitionList() : _trans(NULL), _size(0) {};

    /**
     * @brief Destructor.
     */
    ~TransitionList()
    { if(_trans!=NULL) free(_trans); }

    /**
     * @brief Copy constructor.
     *
     * @param tl Reference to transition list object.
     */
    TransitionList(const TransitionList& tl) : _trans(NULL), _size(tl._size)
    {
      if(_size>0){
        _trans = (Transition*)malloc(_size*sizeof(Transition));
        assert(_trans!=NULL);
      }
      memcpy(_trans, tl._trans, sizeof(_trans[0]) * _size);
    }


    /**
     * @brief Less-than operator.
     *
     * t1<t2 (or t1.operator<(t2) is true iff
     *   - t1 has less transitions than t2, or
     *   - t1 and t2 have the same number of transitions, and the
     *     first transition which is different for t1 and t2 (sorted
     *     by symbol) has a lower symbol for t1, or
     *   - t1 and t2 have the same number of transitions, and the
     *     first transition which is different for t1 and t2 (sorted
     *     by symbol) has the same symbol but a lower new state for t1
     *
     * @param tl Reference to transition list object.
     * @return True iff the t1<t2.
     */
    bool operator<(const TransitionList& tl) const;

    /**
     * @brief Greater-than operator.
     *
     * t1>t2 (or t1.operator>(t2) is true iff
     *   - t1 has more transitions than t2, or
     *   - t1 and t2 have the same number of transitions, and the
     *     first transition which is different for t1 and t2 (sorted
     *     by symbol) has a higher symbol for t1, or
     *   - t1 and t2 have the same number of transitions, and the
     *     first transition which is different for t1 and t2 (sorted
     *     by symbol) has the same symbol but a higher new state for t1
     *
     * @param tl Reference to transition list object.
     * @return True iff the t1>t2.
     */
    bool operator>(const TransitionList& tl) const;

    /**
     * @brief Equals operator.
     *
     * t1==t2 (or t1.operator==(t2) is true iff
     *   - t1 and t2 have the same number of transitions, which have
     *     the same set of of symbols and for each symbol the new
     *     states are equal
     *
     * @param tl Reference to transition list object.
     * @return True iff the t1==t2.
     */
    bool operator==(const TransitionList& tl) const;

    /**
     * @brief Check for emptyness.
     *
     * @return True iff the transition list is empty.
     */
    bool empty() { return (_size==0); }

    /**
     * @brief Get transition list size.
     *
     * @return Size of the transition list (number of transitions, or 0 if empty).
     */
    unsigned int size() const { return _size; }

    /**
     * @brief Index operator.
     *
     * Returns a reference to the ith transition on the list. i must
     * be between 0 and size-1 (0<=i<=size-1).
     *
     * @param i Index of transition.
     * @return Reference to the ith transition.
     */
    const Transition& operator[](unsigned int i) const { return _trans[i]; }

    /**
     * @brief Get the last transition.
     *
     * Returns a pointer to the last transition, or NULL pointer if
     * the list is empty.
     *
     * @return Pointer to last transition, or NULL.
     */
    Transition* last()
    { if(_size>0) return &_trans[_size-1];
      return NULL;
    }

    /**
     * @brief Get the transition corresponding to a symbol.
     *
     * Returns a pointer to the transition corresponding to a given
     * symbol, or NULL pointer if the symbol is not found on the list
     * (a transition with that symbol does not exist).
     *
     * @param sy Input symbol.
     * @return Pointer to last transition, or NULL.
     */
    Transition* find(symbol_t sy)
    { for(unsigned int i=0; i<_size; i++){
        if(_trans[i]._symbol == sy) return &_trans[i];
      }
      return NULL;
    }

    /**
     * @brief Append a new transition to the list.
     *
     * Appends a new transition to the end of the list. The allocated
     * size is increased if necessary. If a transition with the same
     * symbol already exists, the behaviour is undefined.
     *
     * @param sy Input symbol.
     * @param st Pointer to new state.
     */
    void append(symbol_t sy, State* st)
    {
      if(_size==0){
        _trans = (Transition*)malloc(sizeof(Transition));
      }
      else{
        _trans = (Transition*)realloc(_trans,(_size+1)*sizeof(Transition));
      }
      assert(_trans!=NULL);
      _trans[_size]._symbol=sy;
      _trans[_size]._state=st;
      _size++;
    }

  };

  // }}}
  // {{{ Automaton::State
  /**
   * @class State
   * @brief Class representing a state of the automaton.
   *
   * The representation of the automaton states consists of a
   * transition list for the state, and meta info blob (the latter
   * only used for special states reached by a final transition. A
   * final transition is a transition from a final (accepting) state
   * with the reserved FINAL_SYMBOL (0xff) to a special state, which
   * stores the meta info corresponding to the final state. For each
   * unique meta info blob, there is one special state.
   */
  class State {

  private:

    TransitionList  _tlist;  /**< Transition list. */
    const Blob      *_blob;  /**< Meta info blob.  */

  public:

    /**
     * @brief Constructor.
     *
     * Default constructor, creates a state with an empty transition
     * list and no (NULL) blob.
     */
    State() : _tlist(), _blob(NULL) {}

    /**
     * @brief Constructor.
     *
     * Creates a (special) state with an empty transition list and a
     * given blob.
     *
     * @param b Pointer to blob.
     */
    State(const Blob* b) : _tlist(), _blob(b) {}

    /**
     * @brief Destructor.
     */
    ~State() { if(_blob!=NULL) delete _blob; }

    /**
     * @brief Check if the state is final (accepting) state.
     *
     * @return True if the state is final.
     */
    bool isFinal() { return child(FSA::FINAL_SYMBOL)!=NULL; }

    /**
     * @brief Get the blob assigned to the state.
     *
     * @return Pointer to blob.
     */
    const Blob* getBlob() const { return _blob; }

    /**
     * @brief Check if the state has children.
     *
     * Returns true if the state has children (the transition list is
     * not empty), or false if the state is a leaf.
     *
     * @return True if the state has children.
     */
    bool hasChildren() { return !_tlist.empty(); }

    /**
     * @brief Get child corresponding to a symbol.
     *
     * Get the child of the state which is reached by a transition
     * with a given symbol. If there is no out-transition with that
     * symbol, NULL is returned.
     *
     * @return Pointer to the child, or NULL.
     */
    State* child(symbol_t sy)
    { Transition* t = _tlist.find(sy);
      if(t!=NULL){ return t->_state; }
      return NULL;
    }

    /**
     * @brief Get the last child.
     *
     * Get the last child of the state which is reached by a valid
     * transition (not FINAL_SYMBOL). If no such children exists, NULL
     * is returned.
     *
     * @return Pointer to last child, or NULL.
     */
    State* lastChild()
    { Transition* t = _tlist.last();
      if(t!=NULL && t->_symbol!=FSA::FINAL_SYMBOL){ return t->_state; }
      return NULL;
    }

    /**
     * @brief Update the last child.
     *
     * Updates the last child to point to a new state. This method is
     * used when merging equivalent subtrees together.
     *
     * @param st New state to be used in last child.
     */
    void updateLastChild(State* st)
    { Transition* t = _tlist.last();
      if(t!=NULL){
        t->_state = st;
      }
    }

    /**
     * @brief Append a new empty child.
     *
     * Append an empty child to the list of transitions using the
     * given symbol (and optional blob).
     *
     * @param sy New transition symbol.
     * @param b  Optional blob to be assigned to the new state, defaults to NULL.
     * @return Pointer to the new state.
     */
    State* addEmptyChild(symbol_t sy, const Blob *b=NULL)
    {
      State* child = new State(b);
      assert(child!=NULL);
      _tlist.append(sy,child);
      return child;
    }

    /**
     * @brief Add a transition to an existing state.
     *
     * Append a new transition to the list pointing to an existing
     * state, using the given symbol.
     *
     * @param sy New transition symbol.
     * @param child Pointer to destination state (already existing).
     * @return Pointer to the child state.
     */
    State* addChild(symbol_t sy, State* child)
    {
      _tlist.append(sy,child);
      return child;
    }

    /**
     * @brief Get the transition list.
     *
     * Get the transition list of the state.
     *
     * @return Reference to the transition list.
     */
    const TransitionList& getTransitionList(void) const { return _tlist; }


  };

  // }}}
  // {{{ Automaton::TListPtrLess
  /**
   * @class TListPtrLess
   * @brief Less-than functor for use with ordered STL containers.
   *
   * The function compares two TransitionList pointers by comparing
   * the objects they point to.
   */
  struct TListPtrLess {
      inline bool operator()(const TransitionList * const & x, const TransitionList * const & y) const { return *x < *y; }
  };
  // }}}
  // {{{ Special allocator for Register that will make it possible to completely reclaim its memory when we are done with it
  template <typename _Tp>
  class MMapArenaAllocator {
    std::vector<_Tp*> _chunks;
    size_t _size; // used # of objects in current chunk
    static const size_t _CAPACITY = 16 * 1024 * 1024; // capacity of chunk in bytes
  public:
    using size_type = size_t;
    using difference_type = ptrdiff_t;
    using pointer = _Tp*;
    using const_pointer = const _Tp*;
    using reference = _Tp&;
    using const_reference = const _Tp&;
    using value_type = _Tp;

    template<typename _Tp1>
      struct rebind
      { using other = MMapArenaAllocator<_Tp1>; };

    MMapArenaAllocator() noexcept : _chunks(), _size(0) { }

    MMapArenaAllocator(const MMapArenaAllocator&) noexcept : _chunks(), _size(0) { }

    template<typename _Tp1>
      MMapArenaAllocator(const MMapArenaAllocator<_Tp1>&) noexcept : _chunks(), _size(0) { }

    ~MMapArenaAllocator() noexcept { release(); }

    pointer
    address(reference __x) const { return &__x; }

    const_pointer
    address(const_reference __x) const { return &__x; }

    // NB: __n is permitted to be 0.  The C++ standard says nothing
    // about what the return value is when __n == 0.
    pointer
    allocate(size_type __n, const void* = 0)
    {
      pointer __ret;
      if(__n) {
        size_type __b = __n * sizeof(_Tp);
        if(_chunks.size()==0 || _CAPACITY - (_size*sizeof(_Tp)) < __b) { // need new chunk
          __ret = static_cast<_Tp*>(::mmap(0, _CAPACITY, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, /*fd=*/0, /*offset=*/0));
          if(__ret == MAP_FAILED)
            throw std::bad_alloc();
          _chunks.push_back(__ret);
          _size = __n;
        }
        else { // fits in current chunk
          __ret = (*(_chunks.end()-1)) + _size;
          _size += __n;
        }
      }
      return __ret;
    }

    // __p is not permitted to be a null pointer.
    void
    deallocate(pointer, size_type)
    { }

    void release(void)
    {
      for(size_t i = 0; i < _chunks.size(); i++){
        ::munmap(_chunks[i], _CAPACITY);
      }
      _chunks.clear();
      _size = 0;
    }

    size_type
    max_size() const noexcept
    { return _CAPACITY / sizeof(_Tp); }

    void
    construct(pointer __p, const _Tp& __val)
    { ::new(__p) value_type(__val); }

    void
    destroy(pointer __p) { __p->~_Tp(); }
  };
  // }}}
  // {{{ Automaton::Register, BlobRegister, StateArray, StateCellArray, PackMap, SymList and iterators

  struct StateArrayLess {
    bool operator()(State* const &x, State* const &y)
    { return x < y; }
  };
  struct StateCellArrayItem {
    State *state;
    uint32_t cell;
    StateCellArrayItem(): state(NULL), cell(0) { }
    StateCellArrayItem(State *s): state(s), cell(0) { }
  };
  struct StateCellArrayLess {
    bool operator()(const StateCellArrayItem &x, const StateCellArrayItem &y)
    { return x.state < y.state; }
  };

  /**
   * @brief Register of states, maps a transition list to a state object
   */
  using Register = std::map< const TransitionList*,State*,TListPtrLess,MMapArenaAllocator< std::pair< const TransitionList*, State* > > >;
  /**
   * @brief State register iterator.
   */
  using RegisterIterator = std::map< const TransitionList*,State*,TListPtrLess,MMapArenaAllocator< std::pair< const TransitionList*, State* > > >::iterator;

  /**
   * @brief Register of states, maps a blob to a special state.
   */
  using BlobRegister = std::map< Blob,State* >;
  /**
   * @brief Blob register iterator.
   */
  using BlobRegisterIterator = std::map< Blob,State* >::iterator;

  /**
   * @brief Array of state pointers.
   */
  using StateArray = std::vector< State* >;
  /**
   * @brief State* array iterator.
   */
  using StateArrayIterator = std::vector< State* >::iterator;

  /**
   * @brief Array of state/cell pairs.
   */
  using StateCellArray = std::vector< StateCellArrayItem >;
  /**
   * @brief StateCell array iterator.
   */
  using StateCellArrayIterator = std::vector< StateCellArrayItem >::iterator;

  /**
   * @brief Packing map, maps a state pointer to a state ID.
   */
  using PackMap = std::map< const void*, unsigned int >;
  /**
   * @brief Packing map iterator.
   */
  using PackMapIterator = std::map< const void*, unsigned int >::iterator;

  /**
   * @brief symbol_t list.
   */
  using SymList = std::list<symbol_t>;
  /**
   * @brief symbol_t list iterator.
   */
  using SymListIterator = std::list<symbol_t>::iterator;
  /**
   * @brief symbol_t list const_iterator.
   */
  using SymListConstIterator = std::list<symbol_t>::const_iterator;
  // }}}

  // {{{ Automaton::PackedAutomaton

  /**
   * @class PackedAutomaton
   * @brief Helper class for packing an automaton.
   *
   * This class is used for packing an Automaton to a compressed
   * format which can be saved to file to be used by the FSA class.
   */
  class PackedAutomaton {

  private:
    bool             _packable;         /**< Packable flag.                    */
    PackMap          _blob_map;         /**< Map blob pointers to indices.     */
    State          **_packed_ptr;       /**< Array for state pointers.         */
    state_t         *_packed_idx;       /**< Array for state indices.          */
    symbol_t        *_symbol;           /**< Array for transition symbols.     */
    bool            *_used;             /**< Array for cell used flags.        */
    hash_t          *_perf_hash;        /**< Array for perfect hash deltas.    */
    hash_t          *_totals;           /**< Array for perfect hash totals.    */
    uint32_t         _packed_size;      /**< Size of packed arrays (in cells). */
    uint32_t         _last_packed;      /**< Index of last packed state.       */

    data_t          *_blob;             /**< Data storage.                     */
    uint32_t         _blob_size;        /**< Data storage size.                */
    uint32_t         _blob_used;        /**< Used data storage size.           */
    uint32_t         _blob_type;        /**< Type of data items (fixed/var.)   */
    uint32_t         _fixed_blob_size;  /**< Data item size if fixed.          */

    state_t          _start_state;      /**< Index of start state.             */

    /**
     * @brief Number of cells to allocate in one expansion.
     */
    static const uint32_t _ALLOC_CELLS = 131072;  // 128k

    /**
     * @brief Number of bytes to allocate in one data storage expansion.
     */
    static const uint32_t _ALLOC_BLOB  = 65536;  // 64k

    /**
     * @brief How long back the search for an empty cell should start.
     */
    static const uint32_t _BACKCHECK = 255;


    /**
     * @brief Expand cell arrays.
     */
    void expandCells();

    /**
     * @brief Expand data storage.
     *
     * @param minExpand Mimimum size to expand, it will be rounded up
     *                  to the nearest multiply of _ALLOC_BLOB.
     */
    void expandBlob(uint32_t minExpand);

    /**
     * @brief Get an empty cell.
     *
     * Start looking for an empty cell _BACKCHECK cells before the
     * last packed cell, and return the index of the first empty cell
     * found. The cell arrays are expanded on demand, that is if no
     * empty cell is found.
     *
     * @return Index of empty cell.
     */
    uint32_t getEmptyCell();

    /**
     * @brief Get an empty cell where a list of transitions can be stored.
     *
     * Start looking for an empty cell _BACKCHECK cells before the
     * last packed cell. In addition to the cell being empty, it
     * should be possible to store a list of transitions from that
     * cell. The cell arrays are expanded on demand, that is if no
     * empty cell is found.
     *
     * @param t List of transition symbols.
     * @return Index of empty cell.
     */
    uint32_t getCell(const SymList &t);

    /**
     * @brief Pack a data item.
     *
     * Pack a data item to the data storage. If the same (or
     * equivalent) data item has been packed before, return the offset
     * where it was packed. Otherwise, pack the data item at the end
     * of the storage (expand storage if needed), add the item and
     * offset to the blob map and return the offset.
     *
     * @param b Pointer to data item.
     * @return Offset to data item in data storage.
     */
    uint32_t packBlob(const Blob* b);

    /**
     * @brief Compute perfect hash deltas for a subtree.
     *
     * Recursive function for computing the perfect hash deltas for
     * all transitions within a subtree. The delta for transition T
     * from state S is the number of final states reachable from state
     * S via transitions lower than T (that is, with a lower input
     * symbol). Also, state S being a final state counts. The hash
     * deltas are filled into the _perf_hash array.
     *
     * @return Number of final states within the subtree.
     */
    hash_t computePerfectHash(state_t state);


  public:

    /**
     * @brief Default constructor.
     */
    PackedAutomaton() :
      _packable(false),
      _blob_map(),
      _packed_ptr(NULL),
      _packed_idx(NULL),
      _symbol(NULL),
      _used(NULL),
      _perf_hash(NULL),
      _totals(NULL),
      _packed_size(0),
      _last_packed(0),
      _blob(NULL),
      _blob_size(0),
      _blob_used(0),
      _blob_type(0),
      _fixed_blob_size(0),
      _start_state(0)
    { }

    /**
     * @brief Destructor.
     */
    ~PackedAutomaton() { reset(); }

    /**
     * @brief Reset the object.
     *
     * Reset the object and free all allocated memory.
     */
    void reset();

    /**
     * @brief Initialize.
     *
     * Reset the object, and initialize data structures, also
     * preallocate memory for cell and data storage.
     */
    void init();

    /**
     * @brief Pack a state.
     *
     * Pack a state and its transitions into the compact structure. For
     * final states, the data item is packed as well.
     *
     * @param s Pointer to state to pack.
     * @return False if the object is not packable (it has been
     *         finalized, or it has not been initialized)
     */
    bool packState(Automaton::StateCellArrayIterator &it);

    /**
     * @brief Set the cell of the start state.
     *
     * @param cell Cell of start state.
     */
    void setStartState(uint32_t cell) { _start_state = (state_t)cell; }

    /**
     * @brief Finalize the packed structure.
     *
     * Obtain all state indices from the state pointers using the
     * pack map. Also compact the data storage if all data items have
     * the same size (only store the size once, and store data items
     * consecutively, without size attribute).
     *
     * @param queue State queue.
     */
    void finalize(const StateCellArray &queue);

    /**
     * @brief Add perfect hash to the automaton.
     *
     * Computes the perfect hash for the whole automaton.
     */
    void addPerfectHash();

    /**
     * @brief Write the automaton to a file.
     *
     * @param filename Name of file.
     * @param serial Serial number.
     * @return True on success.
     */
    bool write(const char *filename, uint32_t serial = 0);

    /**
     * @brief Read an automaton from file.
     *
     * @param filename Name of file.
     * @return True on success.
     */
    bool read(const char *filename);

    /**
     * @brief Perform a lookup in the packed automaton.
     *
     * @param input Input string
     * @return Pointer to data associated with input, or NULL if input is not accepted.
     */
    const unsigned char* lookup(const char *input) const;

    /**
     * @brief Create an FSA object from the automaton.
     *
     * Create an FSA object from the automaton. The PackedAutomaton is
     * implicitly reset if the operation succeeds. PackedAutomanton
     * cannot access the private constructor of FSA, so we have to pass
     * the object via a struct, which is ugly :-(.
     *
     * @param d Pointer to the FSA::Descriptor (struct) to store necessary info for
     *                  creating the FSA object.
     * @return True if the operation was successful.
     */
    bool getFSA(FSA::Descriptor &d);

  };

  // }}}


  Register        *_register;       /**< Register of states.           */
  BlobRegister     _blob_register;  /**< Register of data items.       */
  State*           _q0;             /**< Start state.                  */
  StateArray      *_queue;          /**< State queue.                  */
  bool             _finalized;      /**< Finalized flag.               */
  PackedAutomaton  _packed;         /**< Packed automaton.             */

  /**
   * @brief Get last state in common path.
   *
   * Get the last state of the common path shared by the current input
   * string and strings already in the automaton.  Also sets a pointer
   * to the suffix part of \a input which occurs after the last state.
   *
   * @param input Input string.
   * @return Pointer to last state in common path.
   */
  State* getCPLastState(const char *input, const char *&suffix);

  /**
   * @brief Replace or register a state.
   *
   * Replace the state with an already registered equivalent state in
   * the automaton, or register it if no such state exists yet.
   *
   * @param state Pointer to state to be replaced or registered.
   */
  void replaceOrRegister(State* state);

  /**
   * @brief Add new states for a suffix.
   *
   * Add the necessary new states for a suffix of an input string. The
   * suffix is that part of an input string which is not covered by
   * the common path.
   *
   * @param state Pointer to last state in the common path.
   * @param suffix Suffix.
   * @param b Data item associated with the input.
   */
  void addSuffix(State* state, const char *suffix, const Blob *b=NULL);

  /**
   * @brief Clean up data structures and release memory.
   */
  void cleanUp();

public:

  /**
   * @brief Default constructor.
   */
  Automaton() :
    _register(NULL),
    _blob_register(),
    _q0(NULL),
    _queue(NULL),
    _finalized(false),
    _packed()
  { }

  /**
   * @brief Destructor.
   */
  ~Automaton();

  /**
   * @brief Initialize the object.
   */
  void init();

  /**
   * @brief Insert a string to the automaton.
   *
   * Insert a string to the automaton. Input strings must be inserted
   * in sorted order, otherwise the behaviour is undefined.
   *
   * @param input Input string.
   */
  void insertSortedString(const std::string &input);

  /**
   * @brief Insert a string to the automaton.
   *
   * Insert a string to the automaton. Input strings must be inserted
   * in sorted order, otherwise the behaviour is undefined.
   *
   * @param input Input string.
   * @param meta  Meta info string to be stored in data item).
   */
  void insertSortedString(const std::string &input, const std::string &meta);

  /**
   * @brief Insert a string to the automaton.
   *
   * Insert a string to the automaton. Input strings must be inserted
   * in sorted order, otherwise the behaviour is undefined.
   *
   * @param input Input string.
   * @param b     Reference to data item.
   */
  void insertSortedString(const char *input, const Blob &b);

  /**
   * @brief Insert a string to the automaton.
   *
   * Insert a string to the automaton. Input strings must be inserted
   * in sorted order, otherwise the behaviour is undefined.
   *
   * @param input Input string.
   * @param b     Pointer to data item.
   */
  void insertSortedString(const char *input, const Blob *b=NULL);

  /**
   * @brief Finalize the automaton.
   *
   * Finalize the automaton. This involves calling replaceOrRegister
   * for the start state _q0, and building the packed automaton, so no
   * strings can be added to the automaton after this method is
   * called.
   */
  void finalize();

  /**
   * @brief Add perfect hash to automaton.
   *
   * Compute and add perfect hash structure to the automaton. Only
   * works on finalized automata.
   */
  void addPerfectHash();

  /**
   * @brief Write the finalized automaton to file.
   *
   * @param file Name of the file.
   * @param serial Serial number.
   * @return True on success.
   */
  bool write(const char *file, uint32_t serial = 0);

  /**
   * @brief Write the finalized automaton to file.
   *
   * @param file Name of the file.
   * @param serial Serial number.
   * @return True on success.
   */
  bool write(const std::string &file, uint32_t serial = 0)
  {
    return write(file.c_str(),serial);
  }

  /**
   * @brief Create an FSA object from the automaton.
   *
   * Create an FSA object from the automaton. The Automaton and
   * PackedAutomaton is implicitly reset.
   *
   * @return Pointer to a newly created  FSA object.  The caller is
   *         responsible for freeing it.
   */
  FSA* getFSA(void);

};
// }}}

template<typename _Tp>
  inline bool
  operator==(const Automaton::MMapArenaAllocator<_Tp>&, const Automaton::MMapArenaAllocator<_Tp>&)
  { return true; }

template<typename _Tp>
  inline bool
  operator!=(const Automaton::MMapArenaAllocator<_Tp>&, const Automaton::MMapArenaAllocator<_Tp>&)
  { return false; }

} // namespace fsa