summaryrefslogtreecommitdiffstats
path: root/node-repository/src/main/java/com/yahoo/vespa/hosted/provision/autoscale/ClusterModel.java
blob: 40b0bd8d88b591e79a79d92a01eef233c33d8f4b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.vespa.hosted.provision.autoscale;

import com.yahoo.config.provision.ClusterSpec;
import com.yahoo.vespa.hosted.provision.Node;
import com.yahoo.vespa.hosted.provision.NodeList;
import com.yahoo.vespa.hosted.provision.NodeRepository;
import com.yahoo.vespa.hosted.provision.applications.Application;
import com.yahoo.vespa.hosted.provision.applications.Cluster;
import com.yahoo.vespa.hosted.provision.provisioning.CapacityPolicies;

import java.time.Clock;
import java.time.Duration;
import java.time.Instant;
import java.util.OptionalDouble;

/**
 * A cluster with its associated metrics which allows prediction about its future behavior.
 * For single-threaded, short-term usage.
 *
 * @author bratseth
 */
public class ClusterModel {

    /** Containers typically use more cpu right after generation change, so discard those metrics */
    public static final Duration warmupDuration = Duration.ofMinutes(7);

    /** If we have less than this query rate, we cannot be fully confident in our load data, which influences some decisions. */
    public static final double queryRateGivingFullConfidence = 100.0;

    static final double idealQueryCpuLoad = 0.8;
    static final double idealWriteCpuLoad = 0.95;

    static final double idealContainerMemoryLoad = 0.8;
    static final double idealContentMemoryLoad = 0.65;

    static final double idealContainerDiskLoad = 0.95;
    static final double idealContentDiskLoad = 0.6;

    // Memory for other processes running on the node (config-proxy, metrics-proxy).
    // Keep in sync with config-model/NodeResourcesTuning.
    static final double nodeMemoryOverheadGb = 0.7;

    // When a query is issued on a node the cost is the sum of a fixed cost component and a cost component
    // proportional to document count. We must account for this when comparing configurations with more or fewer nodes.
    // TODO: Measure this, and only take it into account with queries
    private static final double fixedCpuCostFraction = 0.1;

    private final NodeRepository nodeRepository;
    private final Application application;
    private final ClusterSpec clusterSpec;
    private final Cluster cluster;
    private final AllocatableResources current;

    private final CpuModel cpu = new CpuModel();
    private final MemoryModel memory = new MemoryModel();
    private final DiskModel disk = new DiskModel();

    /**
     * The current active nodes of this cluster, including retired,
     * or empty if this models a new cluster not yet deployed.
     */
    private final NodeList nodes;

    private final Clock clock;
    private final Duration scalingDuration;
    private final Duration allocationDuration;
    private final ClusterTimeseries clusterTimeseries;
    private final ClusterNodesTimeseries nodeTimeseries;
    private final Instant at;

    // Lazily initialized members
    private Double queryFractionOfMax = null;
    private Double maxQueryGrowthRate = null;
    private OptionalDouble averageQueryRate = null;

    public ClusterModel(NodeRepository nodeRepository,
                        Application application,
                        ClusterSpec clusterSpec,
                        Cluster cluster,
                        NodeList clusterNodes,
                        AllocatableResources current,
                        MetricsDb metricsDb,
                        Clock clock) {
        this.nodeRepository = nodeRepository;
        this.application = application;
        this.clusterSpec = clusterSpec;
        this.cluster = cluster;
        this.nodes = clusterNodes;
        this.current = current;
        this.clock = clock;
        this.scalingDuration = cluster.scalingDuration(clusterSpec);
        this.allocationDuration = cluster.allocationDuration(clusterSpec);
        this.clusterTimeseries = metricsDb.getClusterTimeseries(application.id(), cluster.id());
        this.nodeTimeseries = new ClusterNodesTimeseries(scalingDuration(), cluster, nodes, metricsDb);
        this.at = clock.instant();
    }

    ClusterModel(NodeRepository nodeRepository,
                 Application application,
                 ClusterSpec clusterSpec,
                 Cluster cluster,
                 AllocatableResources current,
                 Clock clock,
                 Duration scalingDuration,
                 Duration allocationDuration,
                 ClusterTimeseries clusterTimeseries,
                 ClusterNodesTimeseries nodeTimeseries) {
        this.nodeRepository = nodeRepository;
        this.application = application;
        this.clusterSpec = clusterSpec;
        this.cluster = cluster;
        this.nodes = NodeList.of();
        this.current = current;
        this.clock = clock;

        this.scalingDuration = scalingDuration;
        this.allocationDuration = allocationDuration;
        this.clusterTimeseries = clusterTimeseries;
        this.nodeTimeseries = nodeTimeseries;
        this.at = clock.instant();
    }

    public Application application() { return application; }
    public ClusterSpec clusterSpec() { return clusterSpec; }
    public AllocatableResources current() { return current; }
    private ClusterNodesTimeseries nodeTimeseries() { return nodeTimeseries; }
    private ClusterTimeseries clusterTimeseries() { return clusterTimeseries; }

    /** Returns the instant this model was created. */
    public Instant at() { return at;}

    public boolean isEmpty() {
        return nodeTimeseries().isEmpty();
    }

    /** Returns the predicted duration of a rescaling of this cluster */
    public Duration scalingDuration() { return scalingDuration; }

    /**
     * Returns the predicted duration of a resource change in this cluster,
     * until we, or the application , will change it again.
     */
    public Duration allocationDuration() { return allocationDuration; }

    public boolean isContent() {
        return clusterSpec.type().isContent();
    }

    /** Returns the predicted duration of data redistribution in this cluster. */
    public Duration redistributionDuration() {
        if (! isContent()) return Duration.ofMinutes(0);
        return scalingDuration(); // TODO: Estimate separately
    }

    /** Returns the predicted duration of replacing all the nodes in this cluster. */
    public Duration nodeReplacementDuration() {
        return Duration.ofMinutes(5); // TODO: Estimate?
    }

    /** Returns the average of the peak load measurement in each dimension, from each node. */
    public Load peakLoad() {
        return nodeTimeseries().peakLoad();
    }

    /** Returns the relative load adjustment accounting for redundancy in this. */
    public Load redundancyAdjustment() {
        return loadWith(nodeCount(), groupCount());
    }

    public boolean isExclusive() {
        return nodeRepository.exclusiveAllocation(clusterSpec);
    }

    /** Returns the relative load adjustment that should be made to this cluster given available measurements. */
    public Load loadAdjustment() {
        if (nodeTimeseries().measurementsPerNode() < 0.5) return Load.one(); // Don't change based on very little data
        Load adjustment = peakLoad().divide(idealLoad());
        if (! safeToScaleDown())
            adjustment = adjustment.map(v -> v < 1 ? 1 : v);
        return adjustment;
    }

    public boolean isStable(NodeRepository nodeRepository) {
        // The cluster is processing recent changes
        if (nodes.stream().anyMatch(node -> node.status().wantToRetire() ||
                                            node.allocation().get().membership().retired() ||
                                            node.allocation().get().removable()))
            return false;

        // A deployment is ongoing
        if ( ! nodeRepository.nodes().list(Node.State.reserved, Node.State.provisioned).owner(application.id()).isEmpty())
            return false;

        return true;
    }

    /** Are we in a position to make decisions to scale down at this point? */
    public boolean safeToScaleDown() {
        if (hasScaledIn(scalingDuration().multipliedBy(3))) return false;
        if (nodeTimeseries().nodesMeasured() != nodeCount()) return false;
        return true;
    }

    public static Duration minScalingDuration(ClusterSpec clusterSpec) {
        return Duration.ofMinutes(5);
    }

    /** Transforms the given load adjustment to an equivalent adjustment given a target number of nodes and groups. */
    public Load loadAdjustmentWith(int nodes, int groups, Load loadAdjustment) {
        return loadAdjustment // redundancy adjusted target relative to current load
               .multiply(loadWith(nodes, groups)) // redundancy aware adjustment with these counts
               .divide(redundancyAdjustment());   // correct for double redundancy adjustment
    }


    /**
     * Returns the relative load adjustment accounting for redundancy given these nodes+groups
     * relative to node nodes+groups in this.
     */
    public Load loadWith(int givenNodes, int givenGroups) {
        int nodes = nodesAdjustedForRedundancy(givenNodes, givenGroups);
        int groups = groupsAdjustedForRedundancy(givenNodes, givenGroups);
        if (clusterSpec().type() == ClusterSpec.Type.content) { // load scales with node share of content
            int groupSize = nodes / groups;

            // Cpu: Query cpu scales with cluster size, write cpu scales with group size
            // Memory and disk: Scales with group size

            // The fixed cost portion of cpu does not scale with changes to the node count
            double queryCpuPerGroup = fixedCpuCostFraction + (1 - fixedCpuCostFraction) * groupSize() / groupSize;

            double queryCpu = queryCpuPerGroup * groupCount() / groups;
            double writeCpu = (double)groupSize() / groupSize;
            return new Load(cpu.queryFraction() * queryCpu + (1 - cpu.queryFraction()) * writeCpu,
                            (1 - memory.fixedFraction()) * (double)groupSize() / groupSize + memory.fixedFraction() * 1,
                            (double)groupSize() / groupSize);
        }
        else {
            return new Load((double)nodeCount() / nodes, 1, 1);
        }
    }

    /**
     * Returns the ideal load across the nodes of this such that each node will be at ideal load
     * if one of the nodes go down.
     */
    public Load idealLoad() {
        var ideal = new Load(cpu.idealLoad(), memory.idealLoad(), disk.idealLoad()).divide(redundancyAdjustment());
        if ( !cluster.bcpGroupInfo().isEmpty() && cluster.bcpGroupInfo().queryRate() > 0) {
            // Since we have little local information, use information about query cost in other groups
            Load bcpGroupIdeal = adjustQueryDependentIdealLoadByBcpGroupInfo(ideal);

            // Do a weighted sum of the ideal "vote" based on local and bcp group info.
            // This avoids any discontinuities with a near-zero local query rate.
            double localInformationWeight = Math.min(1, averageQueryRate().orElse(0) /
                                                        Math.min(queryRateGivingFullConfidence, cluster.bcpGroupInfo().queryRate()));
            ideal = ideal.multiply(localInformationWeight).add(bcpGroupIdeal.multiply(1 - localInformationWeight));
        }
        return ideal;
    }

    private boolean canRescaleWithinBcpDeadline() {
        return scalingDuration().minus(cluster.clusterInfo().bcpDeadline()).isNegative();
    }

    public Autoscaling.Metrics metrics() {
        return new Autoscaling.Metrics(averageQueryRate().orElse(0),
                                       growthRateHeadroom(),
                                       cpu.costPerQuery().orElse(0));
    }

    private Load adjustQueryDependentIdealLoadByBcpGroupInfo(Load ideal) {
        double currentClusterTotalVcpuPerGroup = nodes.not().retired().first().get().resources().vcpu() * groupSize();

        double targetQueryRateToHandle = ( canRescaleWithinBcpDeadline() ? averageQueryRate().orElse(0)
                                                                         : cluster.bcpGroupInfo().queryRate() )
                                         * cluster.bcpGroupInfo().growthRateHeadroom() * trafficShiftHeadroom();
        double neededTotalVcpPerGroup = cluster.bcpGroupInfo().cpuCostPerQuery() * targetQueryRateToHandle / groupCount() +
                                        ( 1 - cpu.queryFraction()) * cpu.idealLoad() *
                                        (clusterSpec.type().isContainer() ? 1 : groupSize());

        double cpuAdjustment = neededTotalVcpPerGroup / currentClusterTotalVcpuPerGroup;
        return ideal.withCpu(peakLoad().cpu() / cpuAdjustment);
    }

    private boolean hasScaledIn(Duration period) {
        if (cluster.lastScalingEvent().isEmpty()) return false;
        var lastCompletion = cluster.lastScalingEvent().get().completion();
        if (lastCompletion.isEmpty()) return true; // Ongoing
        return lastCompletion.get().isAfter(clock.instant().minus(period));
    }

    /**
     * Returns the predicted max query growth rate per minute as a fraction of the average traffic
     * in the scaling window.
     */
    private double maxQueryGrowthRate() {
        if (maxQueryGrowthRate != null) return maxQueryGrowthRate;
        return maxQueryGrowthRate = clusterTimeseries().maxQueryGrowthRate(scalingDuration(), clock);
    }

    /** Returns the average query rate in the scaling window as a fraction of the max observed query rate. */
    private double queryFractionOfMax() {
        if (queryFractionOfMax != null) return queryFractionOfMax;
        return queryFractionOfMax = clusterTimeseries().queryFractionOfMax(scalingDuration(), clock);
    }

    /** Returns the average query rate in the scaling window. */
    private OptionalDouble averageQueryRate() {
        if (averageQueryRate != null) return averageQueryRate;
        return averageQueryRate = clusterTimeseries().queryRate(scalingDuration(), clock);
    }

    /** The number of nodes this cluster has, or will have if not deployed yet. */
    // TODO: Make this the deployed, not current count
    public int nodeCount() {
        if ( ! nodes.isEmpty()) return (int)nodes.not().retired().stream().count();
        return cluster.minResources().nodes();
    }

    /** The number of groups this cluster has, or will have if not deployed yet. */
    // TODO: Make this the deployed, not current count
    private int groupCount() {
        if ( ! nodes.isEmpty()) return (int)nodes.not().retired().stream().mapToInt(node -> node.allocation().get().membership().cluster().group().get().index()).distinct().count();
        return cluster.minResources().groups();
    }

    private int groupSize() {
        // ceil: If the division does not produce a whole number we assume some node is missing
        return (int)Math.ceil((double)nodeCount() / groupCount());
    }

    private static int nodesAdjustedForRedundancy(int nodes, int groups) {
        int groupSize = (int)Math.ceil((double)nodes / groups);
        return nodes > 1 ? (groups == 1 ? nodes - 1 : nodes - groupSize) : nodes;
    }

    private static int groupsAdjustedForRedundancy(int nodes, int groups) {
        return nodes > 1 ? (groups == 1 ? 1 : groups - 1) : groups;
    }

    /** Returns the headroom for growth during organic traffic growth as a multiple of current resources. */
    private double growthRateHeadroom() {
        if ( ! nodeRepository.zone().environment().isProduction()) return 1;
        double growthRateHeadroom = 1 + maxQueryGrowthRate() * scalingDuration().toMinutes();
        // Cap headroom at 10% above the historical observed peak
        if (queryFractionOfMax() != 0)
            growthRateHeadroom = Math.min(growthRateHeadroom, 1 / queryFractionOfMax() + 0.1);

        return adjustByConfidence(growthRateHeadroom);
    }

    /**
     * Returns the headroom is needed to handle sudden arrival of additional traffic due to another zone going down
     * as a multiple of current resources.
     */
    private double trafficShiftHeadroom() {
        if ( ! nodeRepository.zone().environment().isProduction()) return 1;
        if (canRescaleWithinBcpDeadline()) return 1;
        double trafficShiftHeadroom;
        if (application.status().maxReadShare() == 0) // No traffic fraction data
            trafficShiftHeadroom = 2.0; // assume we currently get half of the max possible share of traffic
        else if (application.status().currentReadShare() == 0)
            trafficShiftHeadroom = 1/application.status().maxReadShare();
        else
            trafficShiftHeadroom = application.status().maxReadShare() / application.status().currentReadShare();
        return adjustByConfidence(Math.min(trafficShiftHeadroom, 1/application.status().maxReadShare()));
    }

    /**
     * Headroom values are a multiplier of the current query rate.
     * Adjust this value closer to 1 if the query rate is too low to derive statistical conclusions
     * with high confidence to avoid large adjustments caused by random noise due to low traffic numbers.
     */
    private double adjustByConfidence(double headroom) {
        return ( (headroom -1 ) * Math.min(1, averageQueryRate().orElse(0) / queryRateGivingFullConfidence) ) + 1;
    }

    private class CpuModel {

        /** Ideal cpu load must take the application traffic fraction into account. */
        double idealLoad() {
            double queryCpuFraction = queryFraction();
            // Assumptions: 1) Write load is not organic so we should not increase to handle potential future growth.
            //                 (TODO: But allow applications to set their target write rate and size for that)
            //              2) Write load does not change in BCP scenarios.
            return queryCpuFraction * 1/growthRateHeadroom() * 1/trafficShiftHeadroom() * idealQueryCpuLoad +
                   (1 - queryCpuFraction) * idealWriteCpuLoad;
        }

        OptionalDouble costPerQuery() {
            if (averageQueryRate().isEmpty() || averageQueryRate().getAsDouble() == 0.0) return OptionalDouble.empty();
            // TODO: Query rate should generally be sampled at the time where we see the peak resource usage
            int fanOut = clusterSpec.type().isContainer() ? 1 : groupSize();
            return OptionalDouble.of(peakLoad().cpu()  * cpu.queryFraction() * fanOut * nodes.not().retired().first().get().resources().vcpu()
                                     / averageQueryRate().getAsDouble() / groupCount());
        }

        /** The estimated fraction of cpu usage which goes to processing queries vs. writes */
        double queryFraction() {
            OptionalDouble writeRate = clusterTimeseries().writeRate(scalingDuration(), clock);
            if (averageQueryRate().orElse(0) == 0 && writeRate.orElse(0) == 0) return queryFraction(0.5);
            return queryFraction(averageQueryRate().orElse(0) / (averageQueryRate().orElse(0) + writeRate.orElse(0)));
        }

        double queryFraction(double queryRateFraction) {
            double relativeQueryCost = 9; // How much more expensive are queries than writes? TODO: Measure
            double writeFraction = 1 - queryRateFraction;
            return queryRateFraction * relativeQueryCost / (queryRateFraction * relativeQueryCost + writeFraction);
        }

    }

    private class MemoryModel {

        double idealLoad() {
            if (clusterSpec.type().isContainer()) return idealContainerMemoryLoad;
            if (clusterSpec.type() == ClusterSpec.Type.admin) return idealContainerMemoryLoad; // Not autoscaled, but ideal shown in console
            return idealContentMemoryLoad;
        }

        /**
         * Returns the fraction of memory of the current allocation which is currently consumed by
         * fixed data structures which take the same amount of space regardless of document volume.
         */
        double fixedFraction() {
            if (clusterSpec().type().isContainer()) return 1.0;
            double fixedMemory = nodeMemoryOverheadGb +
                                 (averageReal() - nodeMemoryOverheadGb) * 0.05; // TODO: Measure actual content node usage
            return fixedMemory / averageReal();
        }

        double averageReal() {
            if (nodes.isEmpty()) { // we're estimating
                var initialResources = new CapacityPolicies(nodeRepository).specifyFully(cluster.minResources().nodeResources(),
                                                                                         clusterSpec,
                                                                                         application.id());
                return nodeRepository.resourcesCalculator().requestToReal(initialResources,
                                                                          nodeRepository.exclusiveAllocation(clusterSpec),
                                                                          false).memoryGb();
            }
            else {
                return nodes.stream()
                            .mapToDouble(node -> nodeRepository.resourcesCalculator().realResourcesOf(node, nodeRepository).memoryGb())
                            .average()
                            .getAsDouble();
            }
        }

    }

    private class DiskModel {

        double idealLoad() {
            // Stateless clusters are not expected to consume more disk over time -
            // if they do it is due to logs which will be rotated away right before the disk is full
            return clusterSpec.isStateful() ? idealContentDiskLoad : idealContainerDiskLoad;
        }

    }

}