aboutsummaryrefslogtreecommitdiffstats
path: root/searchlib/src/vespa/searchlib/queryeval/predicate_search.cpp
blob: f630cec9b617e07f2ab97b7e669514da03a985a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "predicate_search.h"
#include <vespa/searchlib/fef/termfieldmatchdata.h>
#include <vespa/searchlib/fef/termfieldmatchdataarray.h>
#include <algorithm>

using search::fef::TermFieldMatchData;
using search::fef::TermFieldMatchDataArray;
using std::vector;
using namespace search::predicate;

namespace search {
    using predicate::MIN_INTERVAL;
    using predicate::MAX_INTERVAL;
}

namespace search::queryeval {

namespace {

#ifdef __x86_64__
class SkipMinFeatureSSE2 : public SkipMinFeature
{
public:
    SkipMinFeatureSSE2(const uint8_t * min_feature, const uint8_t * kv, size_t sz);
private:
    typedef char v16u8 __attribute__((vector_size(16)));
    uint32_t next() override;
    uint32_t cmp32(size_t j) {
        v16u8 r0 = _kv[j*2] >= _min_feature[j*2];
        v16u8 r1 = _kv[j*2+1] >= _min_feature[j*2+1];
        return __builtin_ia32_pmovmskb128(r0) | (__builtin_ia32_pmovmskb128(r1) << 16);
    }
    void advance();
    const v16u8 * _min_feature;
    const v16u8 * _kv;
    uint32_t _sz;
    uint32_t _chunk;
    uint32_t _last32;
};

SkipMinFeatureSSE2::SkipMinFeatureSSE2(const uint8_t * min_feature, const uint8_t * kv, size_t sz) :
    _min_feature(reinterpret_cast<const v16u8 *>(min_feature)),
    _kv(reinterpret_cast<const v16u8 *>(kv)),
    _sz(sz),
    _chunk(0),
    _last32(0)
{
    advance();
    if (_chunk == 1) {
        _last32 &= ~0x1;
    }
}

void
SkipMinFeatureSSE2::advance()
{
    for (;(_last32 == 0) && (_chunk < (_sz>>5)); _last32 = cmp32(_chunk++));
    if (_last32 == 0) {
        const uint8_t * min_feature = reinterpret_cast<const uint8_t *>(_min_feature);
        const uint8_t * kv = reinterpret_cast<const uint8_t *>(_kv);
        for (size_t i(_chunk << 5); i < _sz; i++) {
            if (kv[i] >= min_feature[i]) {
                _last32 |= 1 << (i - (_chunk << 5));
            }
        }
        _chunk++;
    }
}

uint32_t
SkipMinFeatureSSE2::next()
{
    if (__builtin_expect(_last32 == 0, true)) {
        advance();
    }
    if (_last32) {
        uint32_t n = vespalib::Optimized::lsbIdx(_last32);
        _last32 &= ~(1 << n);
        n += ((_chunk - 1) << 5);
        return n < _sz ? n : -1;
    } else {
        return -1;
    }
}
#else
class SkipMinFeatureGeneric : public SkipMinFeature
{
    const uint8_t* _min_feature;
    const uint8_t* _kv;
    const uint32_t _sz;
    uint32_t       _cur;
public:
    SkipMinFeatureGeneric(const uint8_t* min_feature, const uint8_t* kv, size_t sz);
    uint32_t next() override;
};

SkipMinFeatureGeneric::SkipMinFeatureGeneric(const uint8_t* min_feature, const uint8_t* kv, size_t sz)
    : _min_feature(min_feature),
      _kv(kv),
      _sz(sz),
      _cur(0)
{
}

uint32_t
SkipMinFeatureGeneric::next()
{
    while (_cur < _sz) {
        if (_kv[_cur] >= _min_feature[_cur]) {
            return _cur++;
        }
        ++_cur;
    }
    return -1;
}
#endif

}

SkipMinFeature::UP
SkipMinFeature::create(const uint8_t * min_feature, const uint8_t * kv, size_t sz)
{
#ifdef __x86_64__
    return std::make_unique<SkipMinFeatureSSE2>(min_feature, kv, sz);
#else
    return std::make_unique<SkipMinFeatureGeneric>(min_feature, kv, sz);
#endif
}

PredicateSearch::PredicateSearch(const uint8_t * minFeatureVector,
                                 const IntervalRange * interval_range_vector,
                                 IntervalRange max_interval_range,
                                 CondensedBitVector::CountVector kV,
                                 vector<PredicatePostingList::UP> posting_lists,
                                 const fef::TermFieldMatchDataArray &tfmda)
    : _skip(SkipMinFeature::create(minFeatureVector, &kV[0], kV.size())),
      _posting_lists(std::move(posting_lists)),
      _sorted_indexes(_posting_lists.size()),
      _sorted_indexes_merge_buffer(_posting_lists.size()),
      _doc_ids(_posting_lists.size()),
      _intervals(_posting_lists.size()),
      _subqueries(_posting_lists.size()),
      _subquery_markers(new uint64_t[max_interval_range+1]),
      _visited(new bool[max_interval_range+1]),
      _termFieldMatchData(tfmda.valid()? tfmda[0] : nullptr),
      _min_feature_vector(minFeatureVector),
      _interval_range_vector(interval_range_vector)
{

    for (size_t i = 0; i < _posting_lists.size(); ++i) {
        _sorted_indexes[i] = i;
        _doc_ids[i] = _posting_lists[i]->getDocId();
        _subqueries[i] = _posting_lists[i]->getSubquery();
    }
}

PredicateSearch::~PredicateSearch()
{
    delete [] _visited;
    delete [] _subquery_markers;
}

bool
PredicateSearch::advanceOneTo(uint32_t doc_id, size_t index) {
    size_t i = _sorted_indexes[index];
    if (__builtin_expect(_posting_lists[i]->next(doc_id - 1), true)) {
        _doc_ids[i] = _posting_lists[i]->getDocId();
        return true;
    }
    _doc_ids[i] = UINT32_MAX;  // will be last after sorting.
    return false;
}

namespace {
template <typename CompareType>
void
sort_indexes(uint16_t *indexes, size_t size, CompareType *values) {
    std::sort(indexes, indexes + size,
              [&] (uint16_t a, uint16_t b) { return values[a] < values[b]; });
}
}  // namespace

void
PredicateSearch::advanceAllTo(uint32_t doc_id) {
    size_t i = 0;
    size_t completed_count = 0;
    for (; i < _sorted_indexes.size() && _doc_ids[_sorted_indexes[i]] < doc_id; ++i) {
        if (!advanceOneTo(doc_id, i)) {
            ++completed_count;
        }
    }
    if (__builtin_expect((i > 0) && ! _sorted_indexes.empty(), true)) {
        sort_indexes(&_sorted_indexes[0], i, &_doc_ids[0]);
        std::merge(_sorted_indexes.begin(), _sorted_indexes.begin() + i,
                   _sorted_indexes.begin() + i, _sorted_indexes.end(),
                   _sorted_indexes_merge_buffer.begin(),
                   [&] (uint16_t a, uint16_t b) { return _doc_ids[a] < _doc_ids[b]; });
        _sorted_indexes.swap(_sorted_indexes_merge_buffer);
        // After sorting and merging the completed indexes are at the end.
        _sorted_indexes.resize(_sorted_indexes.size() - completed_count);
        _sorted_indexes_merge_buffer.resize(_sorted_indexes.size());
    }
}


namespace {
bool
isNotInterval(uint32_t begin, uint32_t end) {
    return begin > end;
}

void
markSubquery(uint32_t begin, uint32_t end, uint64_t subquery, uint64_t *subquery_markers, bool * visited) {
    if (visited[begin]) {
        visited[end] = true;
        subquery_markers[end] |= subquery;
    }
}

// Returns the semantic interval end - or UINT32_MAX if no interval cover is possible
uint32_t
addInterval(uint32_t interval, uint64_t subquery, uint64_t *subquery_markers,
            bool * visited, uint32_t highest_end_seen)
{
    uint32_t begin = interval >> 16;
    uint32_t end = interval & 0xffff;

    if (isNotInterval(begin, end)) {
        // Note: End and begin values are swapped for zStar intervals
        if (highest_end_seen < end) return UINT32_MAX;
        markSubquery(end, begin, ~(subquery_markers[end]), subquery_markers, visited);
        return begin;
    } else {
        if (highest_end_seen < begin - 1) return UINT32_MAX;
        markSubquery(begin - 1, end, subquery_markers[begin - 1] & subquery, subquery_markers, visited);
        return end;
    }
}

// One step of insertion sort: First element is moved to correct position.
void
restoreSortedOrder(size_t first, size_t last, vector<uint16_t> &indexes, const vector<uint32_t> &intervals) {
    uint32_t interval_to_move = intervals[indexes[first]];
    uint16_t index_to_move = indexes[first];
    while (++first < last && interval_to_move > intervals[indexes[first]]) {
        indexes[first - 1] = indexes[first];
    }
    indexes[first - 1] = index_to_move;
}

}  // namespace

bool
PredicateSearch::evaluateHit(uint32_t doc_id, uint32_t k) {
    size_t candidates = sortIntervals(doc_id, k);

    size_t interval_end = _interval_range_vector[doc_id];
    memset(_subquery_markers, 0, sizeof(uint64_t) * (interval_end + 1));
    memset(_visited, false, sizeof(bool) * (interval_end + 1));
    _subquery_markers[0] = UINT64_MAX;
    _visited[0] = true;

    uint32_t highest_end_seen = 1;
    for (size_t i = 0; i < candidates; ) {
        size_t index = _sorted_indexes[i];
        uint32_t last_end_seen = addInterval(_intervals[index], _subqueries[index],
                                             _subquery_markers, _visited, highest_end_seen);
        if (last_end_seen == UINT32_MAX) {
            return false;
        }
        highest_end_seen = std::max(last_end_seen, highest_end_seen);
        if (_posting_lists[index]->nextInterval()) {
            _intervals[index] = _posting_lists[index]->getInterval();
            restoreSortedOrder(i, candidates, _sorted_indexes, _intervals);
        } else {
            ++i;
        }
    }
    return _subquery_markers[interval_end] != 0;
}

size_t
PredicateSearch::sortIntervals(uint32_t doc_id, uint32_t k) {
    size_t candidates = k + 1;
    for (size_t i = candidates; i < _sorted_indexes.size(); ++i) {
        if (_doc_ids[_sorted_indexes[i]] == doc_id) {
            ++candidates;
        } else {
            break;
        }
    }
    for (size_t i = 0; i < candidates; i++) {
        _intervals[_sorted_indexes[i]] = _posting_lists[_sorted_indexes[i]]->getInterval();
    }
    sort_indexes(&_sorted_indexes[0], candidates, &_intervals[0]);
    return candidates;
}

void
PredicateSearch::skipMinFeature(uint32_t doc_id_in)
{
    uint32_t doc_id;
    for (doc_id = _skip->next(); doc_id < doc_id_in; doc_id = _skip->next());

    if (__builtin_expect( ! isAtEnd(doc_id), true)) {
        advanceAllTo(doc_id);
    } else {
        setAtEnd();
    }
}

void
PredicateSearch::doSeek(uint32_t doc_id) {
    skipMinFeature(doc_id);
    while (!_sorted_indexes.empty() && ! isAtEnd()) {
        uint32_t doc_id_0 = _doc_ids[_sorted_indexes[0]];
        uint8_t min_feature = _min_feature_vector[doc_id_0];
        uint8_t k = static_cast<uint8_t>(min_feature == 0 ? 0 : min_feature - 1);
        if (k < _sorted_indexes.size()) {
            uint32_t doc_id_k = _doc_ids[_sorted_indexes[k]];
            if (doc_id_0 == doc_id_k) {
                if (evaluateHit(doc_id_0, k)) {
                    setDocId(doc_id_0);
                    return;
                }
            }
        }
        skipMinFeature(doc_id_0 + 1);
    }
    setAtEnd();
}

void
PredicateSearch::doUnpack(uint32_t doc_id) {
    if (doc_id == getDocId()) {
        if (_termFieldMatchData) {
            auto end = _interval_range_vector[doc_id];
            _termFieldMatchData->setSubqueries(doc_id, _subquery_markers[end]);
        }
    }
}

}