summaryrefslogtreecommitdiffstats
path: root/staging_vespalib/src/tests/clock/clock_benchmark.cpp
blob: 2718cee6a9d3e6d8d5a2813f4b07606d8912012b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// Copyright 2017 Yahoo Holdings. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include <vespa/vespalib/util/clock.h>
#include <cassert>
#include <vector>
#include <atomic>

using vespalib::Clock;
using fastos::TimeStamp;

struct UpdateClock {
    virtual ~UpdateClock() {}
    virtual void update() = 0;
};

struct NSValue : public UpdateClock {
    void update() override { _value = std::chrono::steady_clock::now().time_since_epoch().count(); }
    int64_t _value;
};

struct NSVolatile : public UpdateClock {
    void update() override { _value = std::chrono::steady_clock::now().time_since_epoch().count(); }
    volatile int64_t _value;
};
struct NSAtomic : public UpdateClock {
    void update() override { _value.store(std::chrono::steady_clock::now().time_since_epoch().count()); }
    std::atomic<int64_t> _value;
};

class TestClock : public FastOS_Runnable
{
private:
    int                       _timePeriodMS;
    std::mutex                _lock;
    std::condition_variable   _cond;
    UpdateClock              &_clock;
    bool                      _stop;

    void Run(FastOS_ThreadInterface *thisThread, void *arguments) override;

public:
    TestClock(UpdateClock & clock, double timePeriod)
        : _timePeriodMS(static_cast<uint32_t>(timePeriod*1000)),
          _lock(),
          _cond(),
          _clock(clock),
          _stop(false)
    { }
    ~TestClock() {
        std::lock_guard<std::mutex> guard(_lock);
        _stop = true;
        _cond.notify_all();
    }
};

void TestClock::Run(FastOS_ThreadInterface *thread, void *)
{
    std::unique_lock<std::mutex> guard(_lock);
    while ( ! thread->GetBreakFlag() && !_stop) {
        _clock.update();
        _cond.wait_for(guard, std::chrono::milliseconds(_timePeriodMS));
    }
}

struct SamplerBase : public FastOS_Runnable {
    FastOS_ThreadInterface * _thread;
    uint64_t _samples;
};

template<typename Func>
struct Sampler : public SamplerBase {
    Sampler(Func func) :
       _func(func)
   { }
    void Run(FastOS_ThreadInterface *, void *) override {
        fastos::SteadyTimeStamp start = fastos::ClockSteady::now();
        printf("Starting at %s \n", fastos::ClockSystem::now().toString().c_str());
        uint64_t samples;
        uint64_t countFalse(0);
        for (samples = 0; (samples < _samples); samples++) {
            if ( ! _func(samples)) countFalse++;
        }
        printf("Took %ld clock samples in %2.3f with %ld keeping up\n", samples, (fastos::ClockSteady::now() - start).sec(), countFalse);
    }
    Func _func;
};

template<typename Func>
void benchmark(FastOS_ThreadPool & pool, uint64_t samples, int numThreads, Func func) {
    std::vector<std::unique_ptr<SamplerBase>> threads;
    threads.reserve(numThreads);
    for (int i(0); i < numThreads; i++) {
        SamplerBase * sampler = new Sampler(func);
        sampler->_samples = samples;
        sampler->_thread = pool.NewThread(sampler, nullptr);
        threads.emplace_back(sampler);
    }
    for (const auto & sampler : threads) {
        sampler->_thread->Join();
    }
}

int
main(int , char *argv[])
{
    long frequency = atoll(argv[1]);
    int numThreads = atoi(argv[2]);
    uint64_t samples = atoll(argv[3]);
    FastOS_ThreadPool pool(0x10000);
    NSValue nsValue;
    NSVolatile nsVolatile;
    NSAtomic nsAtomic;
    Clock clock(1.0/frequency);
    TestClock nsClock(nsValue, 1.0/frequency);
    TestClock nsVolatileClock(nsVolatile, 1.0/frequency);
    TestClock nsAtomicClock(nsAtomic, 1.0/frequency);
    assert(pool.NewThread(&clock, nullptr) != nullptr);
    assert(pool.NewThread(&nsClock, nullptr) != nullptr);
    assert(pool.NewThread(&nsVolatileClock, nullptr) != nullptr);
    assert(pool.NewThread(&nsAtomicClock, nullptr) != nullptr);
    fastos::SteadyTimeStamp now = clock.getTimeNSAssumeRunning();
    FastOS_Thread::Sleep(100);

    benchmark(pool, samples, numThreads, [&clock, &now](int64_t i){ return (now+i < clock.getTimeNSAssumeRunning());});
    now = clock.getTimeNSAssumeRunning();
    benchmark(pool, samples, numThreads, [&nsValue, &now](int64_t i){ return (now+i < fastos::SteadyTimeStamp(nsValue._value));});
    now = clock.getTimeNSAssumeRunning();
    benchmark(pool, samples, numThreads, [&nsVolatile, &now](int64_t i){ return (now+i < fastos::SteadyTimeStamp(nsVolatile._value));});
    now = clock.getTimeNSAssumeRunning();
    benchmark(pool, samples, numThreads, [&nsAtomic, &now](int64_t i){ return (now+i < fastos::SteadyTimeStamp(nsAtomic._value.load(std::memory_order_relaxed)));});
    now = clock.getTimeNSAssumeRunning();
    benchmark(pool, samples, numThreads, [&nsAtomic, &now](int64_t i){ return (now+i < fastos::SteadyTimeStamp(nsAtomic._value.load(std::memory_order_consume)));});
    now = clock.getTimeNSAssumeRunning();
    benchmark(pool, samples, numThreads, [&nsAtomic, &now](int64_t i){ return (now+i < fastos::SteadyTimeStamp(nsAtomic._value.load(std::memory_order_acquire)));});
    now = clock.getTimeNSAssumeRunning();
    benchmark(pool, samples, numThreads, [&nsAtomic, &now](int64_t i){ return (now+i < fastos::SteadyTimeStamp(nsAtomic._value.load(std::memory_order_seq_cst)));});

    benchmark(pool, samples, numThreads, [&now](uint64_t i){ return (now+i < fastos::ClockSteady::now());});

    pool.Close();
    clock.stop();
    return 0;
}