summaryrefslogtreecommitdiffstats
path: root/vespajlib/src/main/java/com/yahoo/tensor/functions/Join.java
blob: 17e1c103ea3c9c8de2c51b92c2c01180defd3019 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2017 Yahoo Holdings. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.tensor.functions;

import com.google.common.annotations.Beta;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Sets;
import com.yahoo.tensor.DimensionSizes;
import com.yahoo.tensor.IndexedTensor;
import com.yahoo.tensor.PartialAddress;
import com.yahoo.tensor.Tensor;
import com.yahoo.tensor.TensorAddress;
import com.yahoo.tensor.TensorType;
import com.yahoo.tensor.evaluation.EvaluationContext;
import com.yahoo.tensor.evaluation.TypeContext;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.Set;
import java.util.function.DoubleBinaryOperator;

/**
 * The <i>join</i> tensor operation produces a tensor from the argument tensors containing the set of cells
 * given by the cross product of the cells of the given tensors, having as values the value produced by
 * applying the given combinator function on the values from the two source cells.
 *
 * @author bratseth
 */
@Beta
public class Join extends PrimitiveTensorFunction {

    private final TensorFunction argumentA, argumentB;
    private final DoubleBinaryOperator combinator;

    public Join(TensorFunction argumentA, TensorFunction argumentB, DoubleBinaryOperator combinator) {
        Objects.requireNonNull(argumentA, "The first argument tensor cannot be null");
        Objects.requireNonNull(argumentB, "The second argument tensor cannot be null");
        Objects.requireNonNull(combinator, "The combinator function cannot be null");
        this.argumentA = argumentA;
        this.argumentB = argumentB;
        this.combinator = combinator;
    }

    /** Returns the type resulting from applying Join to the two given types */
    // TODO: Replace implementation by new TensorType.Builder(a.type(), b.type()).build();
    public static TensorType outputType(TensorType a, TensorType b) {
        TensorType.Builder typeBuilder = new TensorType.Builder();
        for (int i = 0; i < a.dimensions().size(); ++i) {
            TensorType.Dimension aDim = a.dimensions().get(i);
            for (int j = 0; j < b.dimensions().size(); ++j) {
                TensorType.Dimension bDim = b.dimensions().get(j);
                if (aDim.name().equals(bDim.name())) { // include
                    if (aDim.isIndexed() && bDim.isIndexed()) {
                        if (aDim.size().isPresent() || bDim.size().isPresent())
                            typeBuilder.indexed(aDim.name(), Math.min(aDim.size().orElse(Long.MAX_VALUE),
                                                                      bDim.size().orElse(Long.MAX_VALUE)));
                        else
                            typeBuilder.indexed(aDim.name());
                    }
                    else {
                        typeBuilder.mapped(aDim.name());
                    }
                }
            }
        }
        return typeBuilder.build();
    }

    public DoubleBinaryOperator combinator() { return combinator; }

    @Override
    public List<TensorFunction> arguments() { return ImmutableList.of(argumentA, argumentB); }

    @Override
    public TensorFunction withArguments(List<TensorFunction> arguments) {
        if ( arguments.size() != 2)
            throw new IllegalArgumentException("Join must have 2 arguments, got " + arguments.size());
        return new Join(arguments.get(0), arguments.get(1), combinator);
    }

    @Override
    public PrimitiveTensorFunction toPrimitive() {
        return new Join(argumentA.toPrimitive(), argumentB.toPrimitive(), combinator);
    }

    @Override
    public String toString(ToStringContext context) {
        return "join(" + argumentA.toString(context) + ", " + argumentB.toString(context) + ", " + combinator + ")";
    }

    @Override
    public <NAMETYPE extends TypeContext.Name> TensorType type(TypeContext<NAMETYPE> context) {
        return new TensorType.Builder(argumentA.type(context), argumentB.type(context)).build();
    }

    @Override
    public <NAMETYPE extends TypeContext.Name> Tensor evaluate(EvaluationContext<NAMETYPE> context) {
        Tensor a = argumentA.evaluate(context);
        Tensor b = argumentB.evaluate(context);
        TensorType joinedType = new TensorType.Builder(a.type(), b.type()).build();

        // Choose join algorithm
        if (hasSingleIndexedDimension(a) && hasSingleIndexedDimension(b) && a.type().dimensions().get(0).name().equals(b.type().dimensions().get(0).name()))
            return indexedVectorJoin((IndexedTensor)a, (IndexedTensor)b, joinedType);
        else if (joinedType.dimensions().size() == a.type().dimensions().size() && joinedType.dimensions().size() == b.type().dimensions().size())
            return singleSpaceJoin(a, b, joinedType);
        else if (a.type().dimensions().containsAll(b.type().dimensions()))
            return subspaceJoin(b, a, joinedType, true);
        else if (b.type().dimensions().containsAll(a.type().dimensions()))
            return subspaceJoin(a, b, joinedType, false);
        else
            return generalJoin(a, b, joinedType);
    }

    private boolean hasSingleIndexedDimension(Tensor tensor) {
        return tensor.type().dimensions().size() == 1 && tensor.type().dimensions().get(0).isIndexed();
    }

    private Tensor indexedVectorJoin(IndexedTensor a, IndexedTensor b, TensorType type) {
        long joinedRank = Math.min(a.dimensionSizes().size(0), b.dimensionSizes().size(0));
        Iterator<Double> aIterator = a.valueIterator();
        Iterator<Double> bIterator = b.valueIterator();
        IndexedTensor.Builder builder = IndexedTensor.Builder.of(type, new DimensionSizes.Builder(1).set(0, joinedRank).build());
        for (int i = 0; i < joinedRank; i++)
            builder.cell(combinator.applyAsDouble(aIterator.next(), bIterator.next()), i);
        return builder.build();
    }

    /** When both tensors have the same dimensions, at most one cell matches a cell in the other tensor */
    private Tensor singleSpaceJoin(Tensor a, Tensor b, TensorType joinedType) {
        Tensor.Builder builder = Tensor.Builder.of(joinedType);
        for (Iterator<Tensor.Cell> i = a.cellIterator(); i.hasNext(); ) {
            Map.Entry<TensorAddress, Double> aCell = i.next();
            double bCellValue = b.get(aCell.getKey());
            if (Double.isNaN(bCellValue)) continue; // no match
            builder.cell(aCell.getKey(), combinator.applyAsDouble(aCell.getValue(), bCellValue));
        }
        return builder.build();
    }

    /** Join a tensor into a superspace */
    private Tensor subspaceJoin(Tensor subspace, Tensor superspace, TensorType joinedType, boolean reversedArgumentOrder) {
        if (subspace instanceof IndexedTensor && superspace instanceof IndexedTensor)
            return indexedSubspaceJoin((IndexedTensor) subspace, (IndexedTensor) superspace, joinedType, reversedArgumentOrder);
        else
            return generalSubspaceJoin(subspace, superspace, joinedType, reversedArgumentOrder);
    }

    private Tensor indexedSubspaceJoin(IndexedTensor subspace, IndexedTensor superspace, TensorType joinedType, boolean reversedArgumentOrder) {
        if (subspace.size() == 0 || superspace.size() == 0) // special case empty here to avoid doing it when finding sizes
            return Tensor.Builder.of(joinedType, new DimensionSizes.Builder(joinedType.dimensions().size()).build()).build();

        DimensionSizes joinedSizes = joinedSize(joinedType, subspace, superspace);

        IndexedTensor.Builder builder = (IndexedTensor.Builder)Tensor.Builder.of(joinedType, joinedSizes);

        // Find dimensions which are only in the supertype
        Set<String> superDimensionNames = new HashSet<>(superspace.type().dimensionNames());
        superDimensionNames.removeAll(subspace.type().dimensionNames());

        for (Iterator<IndexedTensor.SubspaceIterator> i = superspace.subspaceIterator(superDimensionNames, joinedSizes); i.hasNext(); ) {
            IndexedTensor.SubspaceIterator subspaceInSuper = i.next();
            joinSubspaces(subspace.valueIterator(), subspace.size(),
                          subspaceInSuper, subspaceInSuper.size(),
                          reversedArgumentOrder, builder);
        }

        return builder.build();
    }

    private void joinSubspaces(Iterator<Double> subspace, long subspaceSize,
                               Iterator<Tensor.Cell> superspace, long superspaceSize,
                               boolean reversedArgumentOrder, IndexedTensor.Builder builder) {
        long joinedLength = Math.min(subspaceSize, superspaceSize);
        if (reversedArgumentOrder) {
            for (int i = 0; i < joinedLength; i++) {
                Tensor.Cell supercell = superspace.next();
                builder.cell(supercell, combinator.applyAsDouble(supercell.getValue(), subspace.next()));
            }
        } else {
            for (int i = 0; i < joinedLength; i++) {
                Tensor.Cell supercell = superspace.next();
                builder.cell(supercell, combinator.applyAsDouble(subspace.next(), supercell.getValue()));
            }
        }
    }

    private DimensionSizes joinedSize(TensorType joinedType, IndexedTensor a, IndexedTensor b) {
        DimensionSizes.Builder builder = new DimensionSizes.Builder(joinedType.dimensions().size());
        for (int i = 0; i < builder.dimensions(); i++) {
            String dimensionName = joinedType.dimensions().get(i).name();
            Optional<Integer> aIndex = a.type().indexOfDimension(dimensionName);
            Optional<Integer> bIndex = b.type().indexOfDimension(dimensionName);
            if (aIndex.isPresent() && bIndex.isPresent())
                builder.set(i, Math.min(b.dimensionSizes().size(bIndex.get()), a.dimensionSizes().size(aIndex.get())));
            else if (aIndex.isPresent())
                builder.set(i, a.dimensionSizes().size(aIndex.get()));
            else if (bIndex.isPresent())
                builder.set(i, b.dimensionSizes().size(bIndex.get()));
        }
        return builder.build();
    }

    private Tensor generalSubspaceJoin(Tensor subspace, Tensor superspace, TensorType joinedType, boolean reversedArgumentOrder) {
        int[] subspaceIndexes = subspaceIndexes(superspace.type(), subspace.type());
        Tensor.Builder builder = Tensor.Builder.of(joinedType);
        for (Iterator<Tensor.Cell> i = superspace.cellIterator(); i.hasNext(); ) {
            Map.Entry<TensorAddress, Double> supercell = i.next();
            TensorAddress subaddress = mapAddressToSubspace(supercell.getKey(), subspaceIndexes);
            double subspaceValue = subspace.get(subaddress);
            if ( ! Double.isNaN(subspaceValue))
                builder.cell(supercell.getKey(),
                             reversedArgumentOrder ? combinator.applyAsDouble(supercell.getValue(), subspaceValue)
                                                   : combinator.applyAsDouble(subspaceValue, supercell.getValue()));
        }
        return builder.build();
    }

    /** Returns the indexes in the superspace type which should be retained to create the subspace type */
    private int[] subspaceIndexes(TensorType supertype, TensorType subtype) {
        int[] subspaceIndexes = new int[subtype.dimensions().size()];
        for (int i = 0; i < subtype.dimensions().size(); i++)
            subspaceIndexes[i] = supertype.indexOfDimension(subtype.dimensions().get(i).name()).get();
        return subspaceIndexes;
    }

    private TensorAddress mapAddressToSubspace(TensorAddress superAddress, int[] subspaceIndexes) {
        String[] subspaceLabels = new String[subspaceIndexes.length];
        for (int i = 0; i < subspaceIndexes.length; i++)
            subspaceLabels[i] = superAddress.label(subspaceIndexes[i]);
        return TensorAddress.of(subspaceLabels);
    }

    /** Slow join which works for any two tensors */
    private Tensor generalJoin(Tensor a, Tensor b, TensorType joinedType) {
        if (a instanceof IndexedTensor && b instanceof IndexedTensor)
            return indexedGeneralJoin((IndexedTensor) a, (IndexedTensor) b, joinedType);
        else
            return mappedHashJoin(a, b, joinedType);
    }

    private Tensor indexedGeneralJoin(IndexedTensor a, IndexedTensor b, TensorType joinedType) {
        DimensionSizes joinedSize = joinedSize(joinedType, a, b);
        Tensor.Builder builder = Tensor.Builder.of(joinedType, joinedSize);
        int[] aToIndexes = mapIndexes(a.type(), joinedType);
        int[] bToIndexes = mapIndexes(b.type(), joinedType);
        joinTo(a, b, joinedType, joinedSize, aToIndexes, bToIndexes, false, builder);
        joinTo(b, a, joinedType, joinedSize, bToIndexes, aToIndexes, true, builder);
        return builder.build();
    }

    private void joinTo(IndexedTensor a, IndexedTensor b, TensorType joinedType, DimensionSizes joinedSize,
                        int[] aToIndexes, int[] bToIndexes, boolean reversedOrder, Tensor.Builder builder) {
        Set<String> sharedDimensions = Sets.intersection(a.type().dimensionNames(), b.type().dimensionNames());
        Set<String> dimensionsOnlyInA = Sets.difference(a.type().dimensionNames(), b.type().dimensionNames());

        DimensionSizes aIterateSize = joinedSizeOf(a.type(), joinedType, joinedSize);
        DimensionSizes bIterateSize = joinedSizeOf(b.type(), joinedType, joinedSize);

        // for each combination of dimensions only in a
        for (Iterator<IndexedTensor.SubspaceIterator> ia = a.subspaceIterator(dimensionsOnlyInA, aIterateSize); ia.hasNext(); ) {
            IndexedTensor.SubspaceIterator aSubspace = ia.next();
            // for each combination of dimensions in a which is also in b
            while (aSubspace.hasNext()) {
                Tensor.Cell aCell = aSubspace.next();
                PartialAddress matchingBCells = partialAddress(a.type(), aSubspace.address(), sharedDimensions);
                // for each matching combination of dimensions ony in b
                for (IndexedTensor.SubspaceIterator bSubspace = b.cellIterator(matchingBCells, bIterateSize); bSubspace.hasNext(); ) {
                    Tensor.Cell bCell = bSubspace.next();
                    TensorAddress joinedAddress = joinAddresses(aCell.getKey(), aToIndexes, bCell.getKey(), bToIndexes, joinedType);
                    double joinedValue = reversedOrder ? combinator.applyAsDouble(bCell.getValue(), aCell.getValue())
                                                       : combinator.applyAsDouble(aCell.getValue(), bCell.getValue());
                    builder.cell(joinedAddress, joinedValue);
                }
            }
        }
    }

    private PartialAddress partialAddress(TensorType addressType, TensorAddress address, Set<String> retainDimensions) {
        PartialAddress.Builder builder = new PartialAddress.Builder(retainDimensions.size());
        for (int i = 0; i < addressType.dimensions().size(); i++)
            if (retainDimensions.contains(addressType.dimensions().get(i).name()))
                builder.add(addressType.dimensions().get(i).name(), address.numericLabel(i));
        return builder.build();
    }

    /** Returns the sizes from the joined sizes which are present in the type argument */
    private DimensionSizes joinedSizeOf(TensorType type, TensorType joinedType, DimensionSizes joinedSizes) {
        DimensionSizes.Builder builder = new DimensionSizes.Builder(type.dimensions().size());
        int dimensionIndex = 0;
        for (int i = 0; i < joinedType.dimensions().size(); i++) {
            if (type.dimensionNames().contains(joinedType.dimensions().get(i).name()))
                builder.set(dimensionIndex++, joinedSizes.size(i));
        }
        return builder.build();
    }

    private Tensor mappedGeneralJoin(Tensor a, Tensor b, TensorType joinedType) {
        int[] aToIndexes = mapIndexes(a.type(), joinedType);
        int[] bToIndexes = mapIndexes(b.type(), joinedType);
        Tensor.Builder builder = Tensor.Builder.of(joinedType);
        for (Iterator<Tensor.Cell> aIterator = a.cellIterator(); aIterator.hasNext(); ) {
            Map.Entry<TensorAddress, Double> aCell = aIterator.next();
            for (Iterator<Tensor.Cell> bIterator = b.cellIterator(); bIterator.hasNext(); ) {
                Map.Entry<TensorAddress, Double> bCell = bIterator.next();
                TensorAddress combinedAddress = joinAddresses(aCell.getKey(), aToIndexes,
                                                              bCell.getKey(), bToIndexes, joinedType);
                if (combinedAddress == null) continue; // not combinable
                builder.cell(combinedAddress, combinator.applyAsDouble(aCell.getValue(), bCell.getValue()));
            }
        }
        return builder.build();
    }

    private Tensor mappedHashJoin(Tensor a, Tensor b, TensorType joinedType) {
        TensorType commonDimensionType = commonDimensions(a, b);
        if (commonDimensionType.dimensions().isEmpty()) {
            return mappedGeneralJoin(a, b, joinedType); // fallback
        }

        boolean swapTensors = a.size() > b.size();
        if (swapTensors) {
            Tensor temp = a;
            a = b;
            b = temp;
        }

        // Map dimension indexes to common and joined type
        int[] aIndexesInCommon = mapIndexes(commonDimensionType, a.type());
        int[] bIndexesInCommon = mapIndexes(commonDimensionType, b.type());
        int[] aIndexesInJoined = mapIndexes(a.type(), joinedType);
        int[] bIndexesInJoined = mapIndexes(b.type(), joinedType);

        // Iterate once through the smaller tensor and construct a hash map for common dimensions
        Map<TensorAddress, List<Tensor.Cell>> aCellsByCommonAddress = new HashMap<>();
        for (Iterator<Tensor.Cell> cellIterator = a.cellIterator(); cellIterator.hasNext(); ) {
            Tensor.Cell aCell = cellIterator.next();
            TensorAddress partialCommonAddress = partialCommonAddress(aCell, aIndexesInCommon);
            aCellsByCommonAddress.putIfAbsent(partialCommonAddress, new ArrayList<>());
            aCellsByCommonAddress.get(partialCommonAddress).add(aCell);
        }

        // Iterate once through the larger tensor and use the hash map to find joinable cells
        Tensor.Builder builder = Tensor.Builder.of(joinedType);
        for (Iterator<Tensor.Cell> cellIterator = b.cellIterator(); cellIterator.hasNext(); ) {
            Tensor.Cell bCell = cellIterator.next();
            TensorAddress partialCommonAddress = partialCommonAddress(bCell, bIndexesInCommon);
            for (Tensor.Cell aCell : aCellsByCommonAddress.getOrDefault(partialCommonAddress, Collections.emptyList())) {
                TensorAddress combinedAddress = joinAddresses(aCell.getKey(), aIndexesInJoined,
                        bCell.getKey(), bIndexesInJoined, joinedType);
                if (combinedAddress == null) continue; // not combinable
                double combinedValue = swapTensors ?
                        combinator.applyAsDouble(bCell.getValue(), aCell.getValue()) :
                        combinator.applyAsDouble(aCell.getValue(), bCell.getValue());
                builder.cell(combinedAddress, combinedValue);
            }
        }

        return builder.build();
    }


    /**
     * Returns the an array having one entry in order for each dimension of fromType
     * containing the index at which toType contains the same dimension name.
     * That is, if the returned array contains n at index i then
     * fromType.dimensions().get(i).name.equals(toType.dimensions().get(n).name())
     * If some dimension in fromType is not present in toType, the corresponding index will be -1
     */
    private int[] mapIndexes(TensorType fromType, TensorType toType) {
        int[] toIndexes = new int[fromType.dimensions().size()];
        for (int i = 0; i < fromType.dimensions().size(); i++)
            toIndexes[i] = toType.indexOfDimension(fromType.dimensions().get(i).name()).orElse(-1);
        return toIndexes;
    }

    private TensorAddress joinAddresses(TensorAddress a, int[] aToIndexes, TensorAddress b, int[] bToIndexes,
                                        TensorType joinedType) {
        String[] joinedLabels = new String[joinedType.dimensions().size()];
        mapContent(a, joinedLabels, aToIndexes);
        boolean compatible = mapContent(b, joinedLabels, bToIndexes);
        if ( ! compatible) return null;
        return TensorAddress.of(joinedLabels);
    }

    /**
     * Maps the content in the given list to the given array, using the given index map.
     *
     * @return true if the mapping was successful, false if one of the destination positions was
     *         occupied by a different value
     */
    private boolean mapContent(TensorAddress from, String[] to, int[] indexMap) {
        for (int i = 0; i < from.size(); i++) {
            int toIndex = indexMap[i];
            if (to[toIndex] != null && ! to[toIndex].equals(from.label(i))) return false;
            to[toIndex] = from.label(i);
        }
        return true;
    }


    /**
     * Returns common dimension of a and b as a new tensor type
     */
    private TensorType commonDimensions(Tensor a, Tensor b) {
        TensorType.Builder typeBuilder = new TensorType.Builder();
        TensorType aType = a.type();
        TensorType bType = b.type();
        for (int i = 0; i < aType.dimensions().size(); ++i) {
            TensorType.Dimension aDim = aType.dimensions().get(i);
            for (int j = 0; j < bType.dimensions().size(); ++j) {
                TensorType.Dimension bDim = bType.dimensions().get(j);
                if (aDim.equals(bDim)) {
                    typeBuilder.set(bDim);
                }
            }
        }
        return typeBuilder.build();
    }

    private TensorAddress partialCommonAddress(Tensor.Cell cell, int[] indexMap) {
        TensorAddress address = cell.getKey();
        String[] labels = new String[indexMap.length];
        for (int i = 0; i < labels.length; ++i) {
            labels[i] = address.label(indexMap[i]);
        }
        return TensorAddress.of(labels);

    }

}