aboutsummaryrefslogtreecommitdiffstats
path: root/vespalib/src/tests/rw_spin_lock/rw_spin_lock_test.cpp
blob: afd18a13d2ecfa802c87989253a6b6ab8b4e6ef5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include <vespa/vespalib/util/spin_lock.h>
#include <vespa/vespalib/util/rw_spin_lock.h>
#include <vespa/vespalib/util/time.h>
#include <vespa/vespalib/util/classname.h>
#include <vespa/vespalib/test/thread_meets.h>
#include <vespa/vespalib/test/nexus.h>
#include <vespa/vespalib/gtest/gtest.h>
#include <type_traits>
#include <ranges>
#include <random>
#include <array>
#include <algorithm>

using namespace vespalib;
using namespace vespalib::test;

bool bench = false;
duration budget = 250ms;
constexpr size_t LOOP_CNT = 4096;
size_t thread_safety_work = 1'000'000;
size_t state_loop = 1;

//-----------------------------------------------------------------------------

/**
 * Estimates the 80th percentile by throwing away the 2 best samples
 * in each set of 10 samples, using the best remaining sample as a
 * representative for the set. Representatives are hierarchically
 * matched against representatives from other sample sets. Result
 * extraction is simplified in that it does not try to estimate the
 * actual 80th percentile, but rather tries to drop the best samples
 * if possible.
 *
 * The goal is to have a more robust way of combining repeated
 * micro-benchmark samples than simply using minimum time. With simple
 * single-threaded CPU-bound tasks, minimum time is a good measure of
 * how expensive something is, but when we start benchmarking
 * operations that may conflict with themselves, we do not want to
 * account for being super lucky. However, we still want to account
 * for the benchmark conditions being as good as possible.
 **/
struct Est80P {
    struct Level {
        int cnt;
        std::array<double,3> data;
        Level(double value) noexcept
          : cnt(1), data{value, 0.0, 0.0} {}
        bool empty() const noexcept { return (cnt == 0); }
        bool full() const noexcept { return (cnt == 10); }
        void add(double value) noexcept {
            assert(!full());
            if (cnt < 3 || data[2] > value) {
                size_t i = std::min(cnt, 2);
                while (i > 0 && data[i - 1] > value) {
                    data[i] = data[i - 1];
                    --i;
                }
                data[i] = value;
            }
            ++cnt;
        }
        double get() const noexcept {
            assert(!empty());
            return data[std::min(2, cnt - 1)];
        }
        void clear() noexcept {
            cnt = 0;
        }
    };
    std::vector<Level> levels;
    void add_sample(double value) {
        for (auto &level: levels) {
            level.add(value);
            if (!level.full()) [[likely]] {
                return;
            }
            value = level.get();
            level.clear();
        }
        levels.emplace_back(value);
    }
    double get_result() {
        assert(!levels.empty());
        return levels.back().get();
    }
};

//-----------------------------------------------------------------------------

struct DummyLock {
    constexpr DummyLock() noexcept {}
    // BasicLockable
    constexpr void lock() noexcept {}
    constexpr void unlock() noexcept {}
    // SharedLockable
    constexpr void lock_shared() noexcept {}
    [[nodiscard]] constexpr bool try_lock_shared() noexcept { return true; }
    constexpr void unlock_shared() noexcept {}
    // rw_upgrade_downgrade_lock
    [[nodiscard]] constexpr bool try_convert_read_to_write() noexcept { return true; }
    constexpr void convert_write_to_read() noexcept {}
};

//-----------------------------------------------------------------------------

struct MyState {
    static constexpr size_t SZ = 5;
    std::array<std::atomic<size_t>,SZ> state = {0,0,0,0,0};
    std::atomic<size_t> inconsistent_reads = 0;
    std::atomic<size_t> expected_writes = 0;
    [[nodiscard]] size_t update() {
        std::array<size_t,SZ> tmp;
        for (size_t i = 0; i < SZ; ++i) {
            tmp[i] = state[i].load(std::memory_order_relaxed);
        }
        for (size_t n = 0; n < state_loop; ++n) {
            for (size_t i = 0; i < SZ; ++i) {
                state[i].store(tmp[i] + 1, std::memory_order_relaxed);
            }
        }
        return 1;
    }
    [[nodiscard]] size_t peek() {
        size_t my_inconsistent_reads = 0;
        std::array<size_t,SZ> tmp;
        for (size_t i = 0; i < SZ; ++i) {
            tmp[i] = state[i].load(std::memory_order_relaxed);
        }
        for (size_t n = 0; n < state_loop; ++n) {
            for (size_t i = 0; i < SZ; ++i) {
                if (state[i].load(std::memory_order_relaxed) != tmp[i]) [[unlikely]] {
                    ++my_inconsistent_reads;
                }
            }
        }
        return my_inconsistent_reads;
    }
    void commit_inconsistent_reads(size_t n) {
        inconsistent_reads.fetch_add(n, std::memory_order_relaxed);
    }
    void commit_expected_writes(size_t n) {
        expected_writes.fetch_add(n, std::memory_order_relaxed);
    }
    [[nodiscard]] bool check() const {
        if (inconsistent_reads > 0) {
            return false;
        }
        for (const auto& value: state) {
            if (value != expected_writes) {
               return false;
            }
        }
        return true;
    }
    void report(const char *name) const {
        if (check()) {
            fprintf(stderr, "%s is thread safe\n", name);
        } else {
            fprintf(stderr, "%s is not thread safe\n", name);
            fprintf(stderr, "    inconsistent reads: %zu\n", inconsistent_reads.load());
            fprintf(stderr, "    expected %zu, got [%zu,%zu,%zu,%zu,%zu]\n",
                    expected_writes.load(), state[0].load(), state[1].load(), state[2].load(), state[3].load(), state[4].load());
        }
    }
};

// random generator used to make per-thread decisions
class Rnd {
private:
    std::mt19937 _engine;
    std::uniform_int_distribution<int> _dist;    
public:
    Rnd(uint32_t seed) : _engine(seed), _dist(0,9999) {}
    bool operator()(int bp) { return _dist(_engine) < bp; }
};

//-----------------------------------------------------------------------------

template<typename T>
concept basic_lockable = requires(T a) {
    { a.lock() } -> std::same_as<void>;
    { a.unlock() } -> std::same_as<void>;
};

template<typename T>
concept lockable = requires(T a) {
    { a.try_lock() } -> std::same_as<bool>;
    { a.lock() } -> std::same_as<void>;
    { a.unlock() } -> std::same_as<void>;
};

template<typename T>
concept shared_lockable = requires(T a) {
    { a.try_lock_shared() } -> std::same_as<bool>;
    { a.lock_shared() } -> std::same_as<void>;
    { a.unlock_shared() } -> std::same_as<void>;
};

template<typename T>
concept can_upgrade = requires(std::shared_lock<T> a, std::unique_lock<T> b) {
    { try_upgrade(std::move(a)) } -> std::same_as<std::unique_lock<T>>;
    { downgrade(std::move(b)) } -> std::same_as<std::shared_lock<T>>;
};

//-----------------------------------------------------------------------------

template <size_t N>
auto run_loop(auto &f) {
    static_assert(N % 4 == 0);
    for (size_t i = 0; i < N / 4; ++i) {
        f(); f(); f(); f();
    }
}

double measure_ns(auto &work) __attribute__((noinline));
double measure_ns(auto &work) {
    constexpr double factor = LOOP_CNT;
    auto t0 = steady_clock::now();
    run_loop<LOOP_CNT>(work);
    return count_ns(steady_clock::now() - t0) / factor;
}

struct BenchmarkResult {
    double cost_ns;
    BenchmarkResult(double cost_ns_in) : cost_ns(cost_ns_in) {}
    void report(vespalib::string desc) {
        fprintf(stderr, "%s: cost_ns: %g\n", desc.c_str(), cost_ns);
    }
    void report(vespalib::string name, vespalib::string desc) {
        report(name + "(" + desc + ")");
    }
};

BenchmarkResult benchmark_ns(auto &&work, size_t num_threads = 1) {
    Est80P collector;
    vespalib::test::ThreadMeets::Avg avg(num_threads);
    auto entry = [&](Nexus &ctx) {
        Timer timer;
        BenchmarkResult result(ctx.num_threads());
        for (bool once_more = true; ctx.vote(once_more); once_more = (timer.elapsed() < budget)) {
            auto cost_ns = avg(measure_ns(work));
            if (ctx.is_main()) {
                collector.add_sample(cost_ns);
            }
        }
    };
    Nexus::run(num_threads, entry);
    auto result = collector.get_result();
    return {result};
}

//-----------------------------------------------------------------------------

template <typename T>
void estimate_cost() {
    T lock;
    auto name = getClassName(lock);
    static_assert(basic_lockable<T>);
    benchmark_ns([&lock]{ lock.lock(); lock.unlock(); }).report(name, "exclusive lock/unlock");
    if constexpr (shared_lockable<T>) {
        benchmark_ns([&lock]{ lock.lock_shared(); lock.unlock_shared(); }).report(name, "shared lock/unlock");
    }
    if constexpr (can_upgrade<T>) {
        auto guard = std::shared_lock(lock);
        benchmark_ns([&lock]{
                         assert(lock.try_convert_read_to_write());
                         lock.convert_write_to_read();
                     }).report(name, "upgrade/downgrade");
    }
}

//-----------------------------------------------------------------------------

template <typename T>
void thread_safety_loop(Nexus &ctx, T &lock, MyState &state, auto &max, int read_bp) {
    Rnd rnd(ctx.thread_id());
    size_t write_cnt = 0;
    size_t bad_reads = 0;
    size_t loop_cnt = thread_safety_work / ctx.num_threads();
    ctx.barrier();
    auto t0 = steady_clock::now();
    for (size_t i = 0; i < loop_cnt; ++i) {
        if (rnd(read_bp)) {
            if constexpr (shared_lockable<T>) {
                std::shared_lock guard(lock);
                bad_reads += state.peek();
            } else {
                std::lock_guard guard(lock);
                bad_reads += state.peek();
            }
        } else {
            {
                std::lock_guard guard(lock);
                write_cnt += state.update();                
            }
        }
    }
    auto my_ms = count_ns(steady_clock::now() - t0) / 1'000'000.0;
    auto actual_ms = max(my_ms);
    if (ctx.is_main()) {
        fprintf(stderr, "---> %s with %2zu threads (%5d bp r): time: %10.2f ms\n",
                getClassName(lock).c_str(), ctx.num_threads(), read_bp, actual_ms);
    }
    state.commit_inconsistent_reads(bad_reads);
    state.commit_expected_writes(write_cnt);
}

//-----------------------------------------------------------------------------

TEST(RWSpinLockTest, different_guards_work_with_rw_spin_lock) {
    static_assert(basic_lockable<RWSpinLock>);
    static_assert(lockable<RWSpinLock>);
    static_assert(shared_lockable<RWSpinLock>);
    static_assert(can_upgrade<RWSpinLock>);
    RWSpinLock lock;
    { auto guard = std::lock_guard(lock); }
    { auto guard = std::unique_lock(lock); }
    { auto guard = std::shared_lock(lock); }
}

TEST(RWSpinLockTest, estimate_basic_costs) {
    Rnd rnd(123);
    MyState state;
    benchmark_ns([&]{ rnd(50); })              .report("   rnd cost");
    benchmark_ns([&]{ (void) state.peek(); })  .report("  peek cost");
    benchmark_ns([&]{ (void) state.update(); }).report("update cost");
}

template <typename T>
void benchmark_lock() {
    auto lock = std::make_unique<T>();
    auto state = std::make_unique<MyState>();
    for (size_t bp: {10000, 9999, 5000, 0}) {
        for (size_t num_threads: {8, 4, 2, 1}) {
            if (bench || (bp == 9999 && num_threads == 8)) {
                vespalib::test::ThreadMeets::Max<double> max(num_threads);
                Nexus::run(num_threads, [&](Nexus &ctx) {
                    thread_safety_loop(ctx, *lock, *state, max, bp);
                });
            }
        }
    }
    state->report(getClassName(*lock).c_str());
    if (!std::same_as<T,DummyLock>) {
        EXPECT_TRUE(state->check());
    }
}

TEST(RWSpinLockTest, benchmark_dummy_lock)   { benchmark_lock<DummyLock>(); }
TEST(RWSpinLockTest, benchmark_rw_spin_lock) { benchmark_lock<RWSpinLock>(); }
TEST(RWSpinLockTest, benchmark_shared_mutex) { benchmark_lock<std::shared_mutex>(); }
TEST(RWSpinLockTest, benchmark_mutex)        { benchmark_lock<std::mutex>(); }
TEST(RWSpinLockTest, benchmark_spin_lock)    { benchmark_lock<SpinLock>(); }

struct MyRefCnt {
    std::atomic<uint32_t> value;
    void fetch_add() noexcept {
        value.fetch_add(1, std::memory_order_acquire);
    }
    void fetch_sub() noexcept {
        value.fetch_sub(1, std::memory_order_release);
    };
    void cmp_add_guess() noexcept {
        uint32_t expected = 0;
        uint32_t desired = 1;
        while (!value.compare_exchange_weak(expected, desired,
                                            std::memory_order_acquire,
                                            std::memory_order_relaxed))
        {
            desired = expected + 1;
        }
    }
    void cmp_sub_guess() noexcept {
        uint32_t expected = 1;
        uint32_t desired = 0;
        while (!value.compare_exchange_weak(expected, desired,
                                            std::memory_order_release,
                                            std::memory_order_relaxed))
        {
            desired = expected - 1;
        }
    }
    void cmp_add_load() noexcept {
        uint32_t expected = value.load(std::memory_order_relaxed);
        uint32_t desired = expected + 1;
        while (!value.compare_exchange_weak(expected, desired,
                                            std::memory_order_acquire,
                                            std::memory_order_relaxed))
        {
            desired = expected + 1;
        }
    }
    void cmp_sub_load() noexcept {
        uint32_t expected = value.load(std::memory_order_relaxed);
        uint32_t desired = expected - 1;
        while (!value.compare_exchange_weak(expected, desired,
                                            std::memory_order_release,
                                            std::memory_order_relaxed))
        {
            desired = expected - 1;
        }
    }
};

TEST(RWSpinLockTest, benchmark_compare_exchange_vs_fetch_add_sub) {
    if (!bench) {
        fprintf(stderr, "[ SKIPPED  ] this test is only run in benchmarking mode\n");
        return;
    }
    MyRefCnt value;
    auto fetch_add = [&value]{ value.fetch_add(); };
    auto fetch_sub = [&value]{ value.fetch_sub(); };
    auto cmp_add_guess = [&value]{ value.cmp_add_guess(); };
    auto cmp_sub_guess = [&value]{ value.cmp_sub_guess(); };
    auto cmp_add_load = [&value]{ value.cmp_add_load(); };
    auto cmp_sub_load = [&value]{ value.cmp_sub_load(); };

    auto do_fetch = [&]{ fetch_add(); fetch_sub(); };
    auto do_cmp_guess = [&]{ cmp_add_guess(); cmp_sub_guess(); };
    auto do_cmp_load = [&]{ cmp_add_load(); cmp_sub_load(); };

    auto do_4_fetch = [&]{ run_loop<4>(fetch_add); run_loop<4>(fetch_sub); };
    auto do_4_cmp_guess = [&]{ run_loop<4>(cmp_add_guess); run_loop<4>(cmp_sub_guess); };
    auto do_4_cmp_load = [&]{ run_loop<4>(cmp_add_load); run_loop<4>(cmp_sub_load); };

    benchmark_ns(do_fetch, 4).report("fetch_add -> fetch_sub");
    benchmark_ns(do_cmp_guess, 4).report("cmp_add_guess -> cmp_sub_guess");
    benchmark_ns(do_cmp_load, 4).report("cmp_add_load -> cmp_sub_load");
    benchmark_ns(do_4_fetch, 4).report("4fetch_add -> 4fetch_sub");
    benchmark_ns(do_4_cmp_guess, 4).report("4cmp_add_guess -> 4cmp_sub_guess");
    benchmark_ns(do_4_cmp_load, 4).report("4cmp_add_load -> 4cmp_sub_load");
}

TEST(RWSpinLockTest, estimate_single_threaded_costs) {
    estimate_cost<DummyLock>();
    estimate_cost<SpinLock>();
    estimate_cost<std::mutex>();
    estimate_cost<RWSpinLock>();
    estimate_cost<std::shared_mutex>();
}

int main(int argc, char **argv) {
    if (argc > 1 && (argv[1] == std::string("bench"))) {
        bench = true;
        budget = 5s;
        state_loop = 1024;
        fprintf(stderr, "running in benchmarking mode\n");
        ++argv;
        --argc;
    }
    ::testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();
}