summaryrefslogtreecommitdiffstats
path: root/vespalib/src/vespa/vespalib/net/crypto_engine.cpp
blob: ddc2ff14498997c644351504bd7e1d831adede3a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Copyright 2018 Yahoo Holdings. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "crypto_engine.h"
#include <vespa/vespalib/data/smart_buffer.h>
#include <vespa/vespalib/net/tls/authorization_mode.h>
#include <vespa/vespalib/net/tls/auto_reloading_tls_crypto_engine.h>
#include <vespa/vespalib/net/tls/crypto_exception.h>
#include <vespa/vespalib/net/tls/maybe_tls_crypto_engine.h>
#include <vespa/vespalib/net/tls/statistics.h>
#include <vespa/vespalib/net/tls/tls_crypto_engine.h>
#include <vespa/vespalib/net/tls/transport_security_options.h>
#include <vespa/vespalib/net/tls/transport_security_options_reading.h>
#include <vespa/vespalib/stllike/string.h>
#include <vector>
#include <chrono>
#include <thread>
#include <xxhash.h>
#include <cassert>

#include <vespa/log/log.h>
LOG_SETUP(".vespalib.net.crypto_engine");

namespace vespalib {

namespace {

struct HashState {
    using clock = std::chrono::high_resolution_clock;
    const void       *self;
    clock::time_point now;
    HashState() : self(this), now(clock::now()) {}
};

char gen_key() {
    HashState hash_state;
    std::this_thread::sleep_for(std::chrono::microseconds(42));
    return XXH64(&hash_state, sizeof(hash_state), 0);
}

class NullCryptoSocket : public CryptoSocket
{
private:
    SocketHandle _socket;
public:
    NullCryptoSocket(SocketHandle socket) : _socket(std::move(socket)) {}
    int get_fd() const override { return _socket.get(); }
    HandshakeResult handshake() override { return HandshakeResult::DONE; }
    void do_handshake_work() override {}
    size_t min_read_buffer_size() const override { return 1; }
    ssize_t read(char *buf, size_t len) override { return _socket.read(buf, len); }
    ssize_t drain(char *, size_t) override { return 0; }
    ssize_t write(const char *buf, size_t len) override { return _socket.write(buf, len); }
    ssize_t flush() override { return 0; }
    ssize_t half_close() override { return _socket.half_close(); }
};

class XorCryptoSocket : public CryptoSocket
{
private:
    static constexpr size_t CHUNK_SIZE = 16 * 1024;
    enum class OP { READ_KEY, WRITE_KEY };
    std::vector<OP> _op_stack;
    char            _my_key;
    char            _peer_key;
    SmartBuffer     _input;
    SmartBuffer     _output;
    SocketHandle    _socket;

    bool is_blocked(ssize_t res, int error) const {
        return ((res < 0) && ((error == EWOULDBLOCK) || (error == EAGAIN)));
    }

    HandshakeResult try_read_key() {
        ssize_t res = _socket.read(&_peer_key, 1);
        if (is_blocked(res, errno)) {
            return HandshakeResult::NEED_READ;
        }
        return (res == 1)
            ? HandshakeResult::DONE
            : HandshakeResult::FAIL;
    }

    HandshakeResult try_write_key() {
        ssize_t res = _socket.write(&_my_key, 1);
        if (is_blocked(res, errno)) {
            return HandshakeResult::NEED_WRITE;
        }
        return (res == 1)
            ? HandshakeResult::DONE
            : HandshakeResult::FAIL;
    }

    HandshakeResult perform_hs_op(OP op) {
        if (op == OP::READ_KEY) {
            return try_read_key();
        } else {
            assert(op == OP::WRITE_KEY);
            return try_write_key();
        }
    }

public:
    XorCryptoSocket(SocketHandle socket, bool is_server)
        : _op_stack(is_server
                    ? std::vector<OP>({OP::WRITE_KEY, OP::READ_KEY})
                    : std::vector<OP>({OP::READ_KEY, OP::WRITE_KEY})),
          _my_key(gen_key()),
          _peer_key(0),
          _input(CHUNK_SIZE * 2),
          _output(CHUNK_SIZE * 2),
          _socket(std::move(socket)) {}
    int get_fd() const override { return _socket.get(); }
    HandshakeResult handshake() override {
        while (!_op_stack.empty()) {
            HandshakeResult partial_result = perform_hs_op(_op_stack.back());
            if (partial_result != HandshakeResult::DONE) {
                return partial_result;
            }
            _op_stack.pop_back();
        }
        return HandshakeResult::DONE;
    }
    void do_handshake_work() override {}
    size_t min_read_buffer_size() const override { return 1; }
    ssize_t read(char *buf, size_t len) override {
        if (_input.obtain().size == 0) {
            auto dst = _input.reserve(CHUNK_SIZE);
            ssize_t res = _socket.read(dst.data, dst.size);
            if (res > 0) {
                _input.commit(res);
            } else {
                return res; // eof/error
            }
        }
        return drain(buf, len);
    }
    ssize_t drain(char *buf, size_t len) override {
        auto src = _input.obtain();
        size_t frame = std::min(len, src.size);
        for (size_t i = 0; i < frame; ++i) {
            buf[i] = (src.data[i] ^ _my_key);
        }
        _input.evict(frame);
        return frame;
    }
    ssize_t write(const char *buf, size_t len) override {
        if (_output.obtain().size >= CHUNK_SIZE) {
            if (flush() < 0) {
                return -1;
            }
            if (_output.obtain().size > 0) {
                errno = EWOULDBLOCK;
                return -1;
            }
        }
        size_t frame = std::min(len, CHUNK_SIZE);
        auto dst = _output.reserve(frame);
        for (size_t i = 0; i < frame; ++i) {
            dst.data[i] = (buf[i] ^ _peer_key);
        }
        _output.commit(frame);
        return frame;
    }
    ssize_t flush() override {
        auto pending = _output.obtain();
        if (pending.size > 0) {
            ssize_t res = _socket.write(pending.data, pending.size);
            if (res > 0) {
                _output.evict(res);
                return 1; // progress
            } else {
                assert(res < 0);
                return -1; // error
            }
        }
        return 0; // done
    }
    ssize_t half_close() override {
        auto flush_res = flush();
        while (flush_res > 0) {
            flush_res = flush();
        }
        if (flush_res < 0) {
            return flush_res;
        }
        return _socket.half_close();
    }
};

using net::tls::AuthorizationMode;

AuthorizationMode authorization_mode_from_env() {
    const char* env = getenv("VESPA_TLS_INSECURE_AUTHORIZATION_MODE");
    vespalib::string mode = env ? env : "";
    if (mode == "enforce") {
        return AuthorizationMode::Enforce;
    } else if (mode == "log_only") {
        return AuthorizationMode::LogOnly;
    } else if (mode == "disable") {
        return AuthorizationMode::Disable;
    } else if (!mode.empty()) {
        LOG(warning, "VESPA_TLS_INSECURE_AUTHORIZATION_MODE environment variable has "
                     "an unsupported value (%s). Falling back to 'enforce'", mode.c_str());
    }
    return AuthorizationMode::Enforce;
}

CryptoEngine::SP create_default_crypto_engine() {
    const char *env = getenv("VESPA_TLS_CONFIG_FILE");
    vespalib::string cfg_file = env ? env : "";
    if (cfg_file.empty()) {
        return std::make_shared<NullCryptoEngine>();
    }
    auto mode = authorization_mode_from_env();
    LOG(debug, "Using TLS crypto engine with config file '%s'", cfg_file.c_str());
    auto tls = std::make_shared<net::tls::AutoReloadingTlsCryptoEngine>(cfg_file, mode);
    env = getenv("VESPA_TLS_INSECURE_MIXED_MODE");
    vespalib::string mixed_mode = env ? env : "";
    if (mixed_mode == "plaintext_client_mixed_server") {
        LOG(debug, "TLS insecure mixed-mode activated: plaintext client, mixed server");
        return std::make_shared<MaybeTlsCryptoEngine>(std::move(tls), false);
    } else if (mixed_mode == "tls_client_mixed_server") {
        LOG(debug, "TLS insecure mixed-mode activated: TLS client, mixed server");
        return std::make_shared<MaybeTlsCryptoEngine>(std::move(tls), true);
    } else if (!mixed_mode.empty() && (mixed_mode != "tls_client_tls_server")) {
        LOG(warning, "bad TLS insecure mixed-mode specified: '%s' (ignoring)",
            mixed_mode.c_str());
    }
    return tls;
}

CryptoEngine::SP try_create_default_crypto_engine() {
    try {
        return create_default_crypto_engine();
    } catch (net::tls::CryptoException &e) {
        LOG(error, "failed to create default crypto engine: %s", e.what());
        std::quick_exit(78);
    }
}

} // namespace vespalib::<unnamed>

CryptoEngine::~CryptoEngine() = default;

CryptoEngine::SP
CryptoEngine::get_default()
{
    static const CryptoEngine::SP shared_default = try_create_default_crypto_engine();
    return shared_default;
}

CryptoSocket::UP
NullCryptoEngine::create_crypto_socket(SocketHandle socket, bool is_server)
{
    net::tls::ConnectionStatistics::get(is_server).inc_insecure_connections();
    return std::make_unique<NullCryptoSocket>(std::move(socket));
}

CryptoSocket::UP
XorCryptoEngine::create_crypto_socket(SocketHandle socket, bool is_server)
{
    return std::make_unique<XorCryptoSocket>(std::move(socket), is_server);
}

} // namespace vespalib