aboutsummaryrefslogtreecommitdiffstats
path: root/vespalib/src/vespa/vespalib/util/sha1.cpp
blob: 6ae87a5838a3dcfb2de76be910beb94136035a4e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "sha1.h"

/* #define LITEND * This should be #define'd if true. */
#define LITEND

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifdef LITEND
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
    |(rol(block->l[i],8)&0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
    ^block->l[(i+2)&15]^block->l[i&15],1))

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);

namespace vespalib {

void
Sha1::transform()
{
    uint32_t a, b, c, d, e;
    typedef union {
        uint8_t  c[64];
        uint32_t l[16];
    } CHAR64LONG16;
    CHAR64LONG16 *block = reinterpret_cast<CHAR64LONG16 *>(_buffer);
    /* Copy context->state[] to working vars */
    a = _state[0];
    b = _state[1];
    c = _state[2];
    d = _state[3];
    e = _state[4];
    /* 4 rounds of 20 operations each. Loop unrolled. */
    R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
    R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
    R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
    R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
    R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
    R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
    R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
    R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
    R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
    R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
    R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
    R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
    R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
    R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
    R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
    R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
    R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
    R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
    R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
    R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
    /* Add the working vars back into context.state[] */
    _state[0] += a;
    _state[1] += b;
    _state[2] += c;
    _state[3] += d;
    _state[4] += e;
    /* Wipe variables */
    a = b = c = d = e = 0;
}

Sha1::Sha1()
{
    reset();
}

void
Sha1::reset()
{
    /* SHA1 initialization constants */
    _state[0] = 0x67452301;
    _state[1] = 0xEFCDAB89;
    _state[2] = 0x98BADCFE;
    _state[3] = 0x10325476;
    _state[4] = 0xC3D2E1F0;
    _count[0] = _count[1] = 0;
}

void
Sha1::process(const char *data, size_t len)
{
    uint32_t i, j;
    j = (_count[0] >> 3) & 63;
    if ((_count[0] += len << 3) < (len << 3)) _count[1]++;
    _count[1] += (len >> 29);
    if ((j + len) > 63) {
        memcpy(&_buffer[j], data, (i = 64-j));
        transform();
        for ( ; i + 63 < len; i += 64) {
            memcpy(_buffer, &data[i], 64);
            transform();
        }
        j = 0;
    }
    else i = 0;
    memcpy(&_buffer[j], &data[i], len - i);
}

void
Sha1::get_digest(char *digest, size_t digestLen)
{
    uint32_t i, j;
    uint8_t finalcount[8];

    for (i = 0; i < 8; i++) {
        finalcount[i] =
            static_cast<uint8_t>((_count[(i >= 4 ? 0 : 1)]
                                  >> ((3-(i & 3)) * 8) ) & 255);  /* Endian independent */
    }
    process("\200", 1);
    while ((_count[0] & 504) != 448) {
        process("\0", 1);
    }
    process(reinterpret_cast<char *>(finalcount), 8);  /* Should cause a Transform() */
    if (digestLen > 20)
        digestLen = 20;
    for (i = 0; i < digestLen; i++) {
        digest[i] = static_cast<char>
                    ((_state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
    }
    /* Wipe variables */
    i = j = 0;
    memset(_buffer, 0, 64);
    memset(_state, 0, 20);
    memset(_count, 0, 8);
    memset(&finalcount, 0, 8);
}

void
Sha1::hash(const char *input, size_t inputLen,
           char *digest, size_t digestLen)
{
    Sha1 sha;
    sha.process(input, inputLen);
    sha.get_digest(digest, digestLen);
}

} // namespace vespalib