aboutsummaryrefslogtreecommitdiffstats
path: root/vespamalloc/src/vespamalloc/util/osmem.cpp
blob: f1d4a527732d60001973b1db34bf51f65926455a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
#include "osmem.h"
#include <vespamalloc/malloc/common.h>
#include <cstdio>
#include <cctype>
#include <cassert>
#include <cerrno>
#include <cstdlib>
#include <unistd.h>
#include <fcntl.h>
#include <sys/statfs.h>
#include <sys/mman.h>
#include <linux/mman.h>
#include <functional>

namespace vespamalloc {

Memory::Memory(size_t blockSize)
    : _blockSize(std::max(blockSize, size_t(getpagesize()))),
      _start(nullptr),
      _end(nullptr)
{ }
Memory::~Memory() = default;

void *
MmapMemory::reserve(size_t & len)
{
    len = 0;
    const size_t wLen(0x1000);
    void * wanted = get(wLen);
    int test = munmap(wanted, wLen);
    ASSERT_STACKTRACE( test == 0 );
    (void) test;
    setStart(wanted);
    setEnd(getStart());
    return nullptr;
}

size_t
findInMemInfo(const char * wanted)
{
    size_t value(0);
    char memInfo[8192];
    int fd(open("/proc/meminfo", O_RDONLY));
    ASSERT_STACKTRACE(fd >= 0);
    if (fd >= 0) {
        int sz(read(fd, memInfo, sizeof(memInfo)));
        ASSERT_STACKTRACE((sz < int(sizeof(memInfo))) && (sz >= 0));
        memInfo[sz] = '\0';
        const char  * found(strstr(memInfo, wanted));
        if (found != nullptr) {
            found += strlen(wanted);
            value = strtoul(found, nullptr, 0);
        }
        close(fd);
    }
    return value;
}

const char *
getToken(const char * & s, const char * e)
{
    for (; (s < e) && isspace(s[0]); s++) { }
    const char * c = s;
    for (; (s < e) && ! isspace(s[0]); s++) { }
    return c;
}

bool
verifyHugePagesMount(const char * mount)
{
    const unsigned int HUGETLBFS_MAGIC(0x958458f6);
    struct statfs64 st;
    int ret(statfs64(mount, &st));
    return (ret == 0) && (st.f_type == HUGETLBFS_MAGIC);
}

MmapMemory::MmapMemory(size_t blockSize) :
    Memory(blockSize),
    _useMAdvLimit(getBlockAlignment()*32),
    _hugePagesFd(-1),
    _hugePagesOffset(0),
    _hugePageSize(0)
{
    setupFAdvise();
    setupHugePages();
}

void
MmapMemory::setupFAdvise()
{
    const char * madv = getenv("VESPA_MALLOC_MADVISE_LIMIT");
    if (madv) {
        _useMAdvLimit = strtoul(madv, nullptr, 0);
    }
}

void
MmapMemory::setupHugePages()
{
    _hugePagesFileName[0] = '\0';
    const char * vespaHugePages = getenv("VESPA_MALLOC_HUGEPAGES");
    if (vespaHugePages && strcmp(vespaHugePages , "no")) {
        int pid(getpid());
        _hugePageSize = findInMemInfo("Hugepagesize:");
        size_t pagesTotal = findInMemInfo("HugePages_Total:");
        if ((_hugePageSize > 0) && (pagesTotal > 0)) {
            if (verifyHugePagesMount(vespaHugePages)) {
                snprintf(_hugePagesFileName, sizeof(_hugePagesFileName), "%s/%d.mem", vespaHugePages, pid);
            } else {
                int fd(open("/proc/mounts", O_RDONLY));
                if (fd >= 0) {
                    char mounts[8192];
                    int sz(read(fd, mounts, sizeof(mounts)));
                    ASSERT_STACKTRACE((sz < int(sizeof(mounts))) && (sz >= 0));
                    (void) sz;
                    const char * c = mounts;
                    while (*c) {
                        const char *e = c;
                        for (; e[0] && (e[0] != '\n'); e++) { }
                        const char *dev = getToken(c, e);
                        (void) dev;
                        const char *mount = getToken(c, e);
                        size_t mountLen(c - mount);
                        const char *fstype = getToken(c, e);
                        if (strstr(fstype, "hugetlbfs") == fstype) {
                            char mountCopy[512];
                            ASSERT_STACKTRACE(mountLen < sizeof(mountCopy));
                            strncpy(mountCopy, mount, mountLen);
                            mountCopy[mountLen] = '\0';
                            if (verifyHugePagesMount(mountCopy)) {
                                snprintf(_hugePagesFileName, sizeof(_hugePagesFileName), "%s/%d.mem", mountCopy, pid);
                                break;
                            }
                        }
                        c = e[0] ? e + 1 : e;
                    }
                    close(fd);
                }
            }
            if (_hugePagesFileName[0] != '\0') {
                _blockSize = std::max(_blockSize, _hugePageSize);
                _hugePagesFd = open(_hugePagesFileName, O_CREAT | O_RDWR, 0755);
                ASSERT_STACKTRACE(_hugePagesFd >= 0);
                int retval(unlink(_hugePagesFileName));
                ASSERT_STACKTRACE(retval == 0);
                (void) retval;
            }
        }
    }
}

MmapMemory::~MmapMemory()
{
    if (_hugePagesFd >= 0) {
        close(_hugePagesFd);
        _hugePagesOffset = 0;
    }
}

void *
MmapMemory::get(size_t len)
{
    void * memory(nullptr);
    int prevErrno = errno;
    memory = getHugePages(len);
    if (memory == nullptr) {
        errno = prevErrno; // The temporary error should not impact if the end is good.
        memory = getNormalPages(len);
    }
    ASSERT_STACKTRACE((uint64_t(&memory) + len) < vespamalloc::MAX_PTR);
    return memory;
}

void *
MmapMemory::getHugePages(size_t len)
{
    void * memory(nullptr);
    if ( ((len & 0x1fffff) == 0) && len) {
        int prevErrno = errno;
        memory = getBasePages(len, MAP_ANON | MAP_PRIVATE | MAP_HUGETLB, -1, 0);
        if (memory == nullptr) {
            if (_hugePagesFd >= 0) {
                errno = prevErrno; // The temporary error should not impact if the end is good.
                memory = getBasePages(len, MAP_SHARED, _hugePagesFd, _hugePagesOffset);
                if (memory) {
                    _hugePagesOffset += len;
                }
            }
        }
    }
    return memory;
}

void *
MmapMemory::getNormalPages(size_t len)
{
    return getBasePages(len, MAP_ANON | MAP_PRIVATE, -1, 0);
}

void *
MmapMemory::getBasePages(size_t len, int mmapOpt, int fd, size_t offset)
{
    char * wanted = reinterpret_cast<char *>(std::max(reinterpret_cast<size_t>(getEnd()), getMinPreferredStartAddress()));
    void * mem(nullptr);
    for (bool ok(false) ; !ok && (mem != MAP_FAILED); wanted += getBlockAlignment()) {
        if (mem != nullptr) {
            int tmp(munmap(mem, len));
            ASSERT_STACKTRACE(tmp == 0);
            (void) tmp;
        }
        // no alignment to _blockSize needed?
        // both 0x10000000000ul*4 and 0x200000 are multiples of the current block size.
        mem = mmap(wanted, len, PROT_READ | PROT_WRITE, mmapOpt, fd, offset);
        ok = (mem == wanted);
    }
    if (mem != MAP_FAILED) {
        if (madvise(mem, len, MADV_HUGEPAGE) != 0) {
            // Just an advise, not everyone will listen...
        }
        if (getStart() == nullptr) {
            setStart(mem);
            // assumes len parameter is always multiple of the current block size.
            setEnd(static_cast<char *>(mem)+len);
        } else if (getEnd() < static_cast<char *>(mem)+len) {
            setEnd(static_cast<char *>(mem)+len);
        }
        return mem;
    }
    return nullptr;
}

bool
MmapMemory::release(void * mem, size_t len)
{
    int ret(0);
    if (_useMAdvLimit <= len) {
        ret = madvise(mem, len, MADV_DONTNEED);
        if (ret != 0) {
            char tmp[256];
            fprintf(stderr, "madvise(%p, %0lx, MADV_DONTNEED) = %d errno=%s\n", mem, len, ret, strerror_r(errno, tmp, sizeof(tmp)));
        }
    }
    return true;
}

bool
MmapMemory::freeTail(void * mem, size_t len)
{
    int ret(0);
    if ((_useMAdvLimit <= len) && (static_cast<char *>(mem) + len) == getEnd()) {
        ret = munmap(mem, len);
        ASSERT_STACKTRACE(ret == 0);
        setEnd(mem);
    }
    return (ret == 0);
}

bool
MmapMemory::reclaim(void * mem, size_t len)
{
    int ret(0);
    if (_useMAdvLimit <= len) {
        ret = madvise(mem, len, MADV_NORMAL);
        if (ret != 0) {
            char tmp[256];
            fprintf(stderr, "madvise(%p, %0lx, MADV_NORMAL) = %d errno=%s\n", mem, len, ret, strerror_r(errno, tmp, sizeof(tmp)));
        }
    }
    return true;
}

}