aboutsummaryrefslogtreecommitdiffstats
path: root/src/vehicles/Floater.cpp
blob: 08688a3cdddad8f356d926ce8d8d9e8791eb3393 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include "common.h"

#include "Timer.h"
#include "WaterLevel.h"
#include "ModelIndices.h"
#include "Physical.h"
#include "Vehicle.h"
#include "Floater.h"

cBuoyancy mod_Buoyancy;

float fVolMultiplier = 1.0f;
// amount of boat volume in bounding box
// 1.0-volume is the empty space in the bbox
float fBoatVolumeDistribution[9] = {
	// rear
	0.75f, 0.9f, 0.75f,
	0.95f, 1.0f, 0.95f,
	0.4f, 0.7f, 0.4f
	// bow
};
float fBoatVolumeDistributionCat[9] = {
	0.9f, 0.3f, 0.9f,
	1.0f, 0.5f, 1.0f,
	0.95f, 0.4f, 0.95f
};
float fBoatVolumeDistributionSail[9] = {
	0.55f, 0.95f, 0.55f,
	0.75f, 1.1f, 0.75f,
	0.3f, 0.8f, 0.3f
};
float fBoatVolumeDistributionDinghy[9] = {
	0.65f, 0.85f, 0.65f,
	0.85f, 1.1f, 0.85f,
	0.65f, 0.95f, 0.65f
};
float fBoatVolumeDistributionSpeed[9] = {
	0.7f, 0.9f, 0.7f,
	0.95f, 1.0f, 0.95f,
	0.6f, 0.7f, 0.6f
};

bool
cBuoyancy::ProcessBuoyancy(CPhysical *phys, float buoyancy, CVector *point, CVector *impulse)
{
	m_numSteps = 2.0f;

	if(!CWaterLevel::GetWaterLevel(phys->GetPosition(), &m_waterlevel, phys->bTouchingWater))
		return false;
	m_matrix = phys->GetMatrix();

	PreCalcSetup(phys, buoyancy);
	SimpleCalcBuoyancy();
	float f = CalcBuoyancyForce(phys, point, impulse);
	if(m_isBoat)
		return true;
	return f != 0.0f;
}

bool
cBuoyancy::ProcessBuoyancyBoat(CVehicle *veh, float buoyancy, CVector *point, CVector *impulse, bool bNoTurnForce)
{
	m_numSteps = 2.0f;

	if(!CWaterLevel::GetWaterLevel(veh->GetPosition(), &m_waterlevel, veh->bTouchingWater))
		return false;
	m_matrix = veh->GetMatrix();
	PreCalcSetup(veh, buoyancy);


	float x, y;
	int ix, i;
	tWaterLevel waterPosition;
	CVector waterNormal;

	// Floater is divided into 3x3 parts. Process and sum each of them
	float volDiv = 1.0f/((m_dimMax.z - m_dimMin.z)*sq(m_numSteps+1.0f));
	ix = 0;
	for(x = m_dimMin.x; x <= m_dimMax.x; x += m_step.x){
		i = ix;
		for(y = m_dimMin.y; y <= m_dimMax.y; y += m_step.y){
			CVector waterLevel(x, y, 0.0f);
			FindWaterLevelNorm(m_positionZ, &waterLevel, &waterPosition, &waterNormal);
			switch(veh->GetModelIndex()){
			case MI_RIO:
				fVolMultiplier = fBoatVolumeDistributionCat[i];
				break;
			case MI_SQUALO:
			case MI_SPEEDER:
			case MI_JETMAX:
				fVolMultiplier = fBoatVolumeDistributionSpeed[i];
				break;
			case MI_COASTG:
			case MI_DINGHY:
				fVolMultiplier = fBoatVolumeDistributionDinghy[i];
				break;
			case MI_MARQUIS:
				fVolMultiplier = fBoatVolumeDistributionSail[i];
				break;
			case MI_PREDATOR:
			case MI_SKIMMER:
			case MI_REEFER:
			case MI_TROPIC:
			default:
				fVolMultiplier = fBoatVolumeDistribution[i];
				break;
			}
			if(waterPosition != FLOATER_ABOVE_WATER){
				float volume = SimpleSumBuoyancyData(waterLevel, waterPosition);
				float upImpulse = volume * volDiv * buoyancy * CTimer::GetTimeStep();
				CVector speed = veh->GetSpeed(Multiply3x3(veh->GetMatrix(), CVector(x, y, 0.0f)));
				float damp = 1.0f - DotProduct(speed, waterNormal)*veh->pHandling->fSuspensionDampingLevel;
				float finalImpulse = upImpulse*Max(damp, 0.0f);
				impulse->z += finalImpulse;
				if(!bNoTurnForce)
					veh->ApplyTurnForce(finalImpulse*waterNormal, Multiply3x3(m_matrix, waterLevel));
			}
			i += 3;
		}
		ix++;
	}

	m_volumeUnderWater *= volDiv;

	*point = Multiply3x3(m_matrix, m_impulsePoint);
	return m_isBoat || m_haveVolume;

}

void
cBuoyancy::PreCalcSetup(CPhysical *phys, float buoyancy)
{
	CColModel *colModel;

	m_isBoat = phys->IsVehicle() && ((CVehicle*)phys)->IsBoat();
	colModel = phys->GetColModel();
	m_dimMin = colModel->boundingBox.min;
	m_dimMax = colModel->boundingBox.max;

	if(m_isBoat){
		switch(phys->GetModelIndex()){
		case MI_PREDATOR:
		default:
			m_dimMax.y *= 1.05f;
			m_dimMin.y *= 0.9f;
			break;
		case MI_SPEEDER:
			m_dimMax.y *= 1.25f;
			m_dimMin.y *= 0.83f;
			break;
		case MI_REEFER:
			m_dimMin.y *= 0.9f;
			break;
		case MI_RIO:
			m_dimMax.y *= 0.9f;
			m_dimMin.y *= 0.9f;
			m_dimMax.z += 0.25f;
			m_dimMin.z -= 0.2f;
			break;
		case MI_SQUALO:
			m_dimMax.y *= 0.9f;
			m_dimMin.y *= 0.9f;
			break;
		case MI_TROPIC:
			m_dimMax.y *= 1.3f;
			m_dimMin.y *= 0.82f;
			m_dimMin.z -= 0.2f;
			break;
		case MI_SKIMMER:
			m_dimMin.y = -m_dimMax.y;
			m_dimMax.y *= 1.2f;
			break;
		case MI_COASTG:
			m_dimMax.y *= 1.1f;
			m_dimMin.y *= 0.9f;
			m_dimMin.z -= 0.3f;
			break;
		case MI_DINGHY:
			m_dimMax.y *= 1.3f;
			m_dimMin.y *= 0.9f;
			m_dimMin.z -= 0.2f;
			break;
		case MI_MARQUIS:
			m_dimMax.y *= 1.3f;
			m_dimMin.y *= 0.9f;
			break;
		case MI_JETMAX:
			m_dimMin.y *= 0.9f;
			break;
		}
	}

	m_step = (m_dimMax - m_dimMin)/m_numSteps;

	if(m_step.z > m_step.x && m_step.z > m_step.y){
		m_stepRatio.x = m_step.x/m_step.z;
		m_stepRatio.y = m_step.y/m_step.z;
		m_stepRatio.z = 1.0f;
	}else if(m_step.y > m_step.x && m_step.y > m_step.z){
		m_stepRatio.x = m_step.x/m_step.y;
		m_stepRatio.y = 1.0f;
		m_stepRatio.z = m_step.z/m_step.y;
	}else{
		m_stepRatio.x = 1.0f;
		m_stepRatio.y = m_step.y/m_step.x;
		m_stepRatio.z = m_step.z/m_step.x;
	}

	m_haveVolume = false;
	m_numPartialVolumes = 1.0f;
	m_volumeUnderWater = 0.0f;
	m_impulsePoint = CVector(0.0f, 0.0f, 0.0f);
	m_position = phys->GetPosition();
	m_positionZ = CVector(0.0f, 0.0f, m_position.z);
	m_buoyancy = buoyancy;
	m_waterlevel += m_waterLevelInc;
}

void
cBuoyancy::SimpleCalcBuoyancy(void)
{
	float x, y;
	tWaterLevel waterPosition;

	// Floater is divided into 3x3 parts. Process and sum each of them
	for(x = m_dimMin.x; x <= m_dimMax.x; x += m_step.x){
		for(y = m_dimMin.y; y <= m_dimMax.y; y += m_step.y){
			CVector waterLevel(x, y, 0.0f);
			FindWaterLevel(m_positionZ, &waterLevel, &waterPosition);
			fVolMultiplier = 1.0f;
			if(waterPosition != FLOATER_ABOVE_WATER)
				SimpleSumBuoyancyData(waterLevel, waterPosition);
		}
	}

	m_volumeUnderWater /= (m_dimMax.z - m_dimMin.z)*sq(m_numSteps+1.0f);
}

float
cBuoyancy::SimpleSumBuoyancyData(CVector &waterLevel, tWaterLevel waterPosition)
{
	static float fThisVolume;
	static CVector AverageOfWaterLevel;
	static float fFraction;
	static float fRemainingSlice;

	float submerged = Abs(waterLevel.z - m_dimMin.z);
	// subtract empty space from submerged volume
	fThisVolume = submerged - (1.0f - fVolMultiplier);
	if(fThisVolume < 0.0f)
		return 0.0f;

	if(m_isBoat){
		fThisVolume *= fVolMultiplier;
		fThisVolume = sq(fThisVolume);
	}

	m_volumeUnderWater += fThisVolume;

	AverageOfWaterLevel.x = waterLevel.x * m_stepRatio.x;
	AverageOfWaterLevel.y = waterLevel.y * m_stepRatio.y;
	AverageOfWaterLevel.z = (waterLevel.z+m_dimMin.z)/2.0f * m_stepRatio.z;

	if(m_flipAverage)
		AverageOfWaterLevel = -AverageOfWaterLevel;

	fFraction = 1.0f/m_numPartialVolumes;
	fRemainingSlice = 1.0f - fFraction;
	m_impulsePoint = m_impulsePoint*fRemainingSlice + AverageOfWaterLevel*fThisVolume*fFraction;
	m_numPartialVolumes += 1.0f;
	m_haveVolume = true;
	return fThisVolume;
}

void
cBuoyancy::FindWaterLevel(const CVector &zpos, CVector *waterLevel, tWaterLevel *waterPosition)
{
	*waterPosition = FLOATER_IN_WATER;
	// waterLevel is a local x,y point
	// m_position is the global position of our floater
	// zpos is the global z coordinate of our floater
	CVector xWaterLevel = Multiply3x3(m_matrix, *waterLevel);
	CWaterLevel::GetWaterLevel(xWaterLevel.x + m_position.x, xWaterLevel.y + m_position.y, m_position.z,
		&waterLevel->z, true);
	waterLevel->z -= xWaterLevel.z + zpos.z;	// make local
	if(waterLevel->z > m_dimMax.z){
		waterLevel->z = m_dimMax.z;
		*waterPosition = FLOATER_UNDER_WATER;
	}else if(waterLevel->z < m_dimMin.z){
		waterLevel->z = m_dimMin.z;
		*waterPosition = FLOATER_ABOVE_WATER;
	}
}

// Same as above but also get normal
void
cBuoyancy::FindWaterLevelNorm(const CVector &zpos, CVector *waterLevel, tWaterLevel *waterPosition, CVector *normal)
{
	*waterPosition = FLOATER_IN_WATER;
	CVector xWaterLevel = Multiply3x3(m_matrix, *waterLevel);
	CWaterLevel::GetWaterLevel(xWaterLevel.x + m_position.x, xWaterLevel.y + m_position.y, m_position.z,
		&waterLevel->z, true);
	waterLevel->z -= xWaterLevel.z + zpos.z;	// make local
	if(waterLevel->z >= m_dimMin.z)
		*normal = CWaterLevel::GetWaterNormal(xWaterLevel.x + m_position.x, xWaterLevel.y + m_position.y);
	if(waterLevel->z > m_dimMax.z){
		waterLevel->z = m_dimMax.z;
		*waterPosition = FLOATER_UNDER_WATER;
	}else if(waterLevel->z < m_dimMin.z){
		waterLevel->z = m_dimMin.z;
		*waterPosition = FLOATER_ABOVE_WATER;
	}
}

bool
cBuoyancy::CalcBuoyancyForce(CPhysical *phys, CVector *point, CVector *impulse)
{
	if(!m_haveVolume)
		return false;

	*point = Multiply3x3(m_matrix, m_impulsePoint);
	*impulse = CVector(0.0f, 0.0f, m_volumeUnderWater*m_buoyancy*CTimer::GetTimeStep());
	return true;
}