aboutsummaryrefslogtreecommitdiffstats
path: root/node-repository/src/main/java/com/yahoo/vespa/hosted/provision/autoscale/ClusterModel.java
blob: 22a6a5812b25174a68d22af555bebe7846932e5c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.vespa.hosted.provision.autoscale;

import com.yahoo.config.provision.ClusterSpec;
import com.yahoo.vespa.hosted.provision.NodeList;
import com.yahoo.vespa.hosted.provision.applications.Application;
import com.yahoo.vespa.hosted.provision.applications.Cluster;
import com.yahoo.vespa.hosted.provision.applications.ScalingEvent;

import java.time.Clock;
import java.time.Duration;
import java.time.Instant;
import java.util.Optional;
import java.util.OptionalDouble;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 * A cluster with its associated metrics which allows prediction about its future behavior.
 * For single-threaded, short-term usage.
 *
 * @author bratseth
 */
public class ClusterModel {

    private static final Logger log = Logger.getLogger(ClusterModel.class.getName());

    /** Containers typically use more cpu right after generation change, so discard those metrics */
    public static final Duration warmupDuration = Duration.ofMinutes(5);

    static final double idealQueryCpuLoad = 0.8;
    static final double idealWriteCpuLoad = 0.95;
    static final double idealMemoryLoad = 0.65;
    static final double idealContainerDiskLoad = 0.95;
    static final double idealContentDiskLoad = 0.6;

    // When a query is issued on a node the cost is the sum of a fixed cost component and a cost component
    // proportional to document count. We must account for this when comparing configurations with more or fewer nodes.
    // TODO: Measure this, and only take it into account with queries
    private static final double fixedCpuCostFraction = 0.1;

    private final Application application;
    private final ClusterSpec clusterSpec;
    private final Cluster cluster;
    /** The current nodes of this cluster, or empty if this models a new cluster not yet deployed */
    private final NodeList nodes;
    private final Clock clock;
    private final Duration scalingDuration;
    private final ClusterTimeseries clusterTimeseries;
    private final ClusterNodesTimeseries nodeTimeseries;

    // Lazily initialized members
    private Double queryFractionOfMax = null;
    private Double maxQueryGrowthRate = null;

    public ClusterModel(Application application,
                        ClusterSpec clusterSpec,
                        Cluster cluster,
                        NodeList clusterNodes,
                        MetricsDb metricsDb,
                        Clock clock) {
        this.application = application;
        this.clusterSpec = clusterSpec;
        this.cluster = cluster;
        this.nodes = clusterNodes;
        this.clock = clock;
        this.scalingDuration = computeScalingDuration(cluster, clusterSpec);
        this.clusterTimeseries = metricsDb.getClusterTimeseries(application.id(), cluster.id());
        this.nodeTimeseries = new ClusterNodesTimeseries(scalingDuration(), cluster, nodes, metricsDb);
    }

    /** For testing */
    ClusterModel(Application application,
                 ClusterSpec clusterSpec,
                 Cluster cluster,
                 Clock clock,
                 Duration scalingDuration,
                 ClusterTimeseries clusterTimeseries,
                 ClusterNodesTimeseries nodeTimeseries) {
        this.application = application;
        this.clusterSpec = clusterSpec;
        this.cluster = cluster;
        this.nodes = NodeList.of();
        this.clock = clock;

        this.scalingDuration = scalingDuration;
        this.clusterTimeseries = clusterTimeseries;
        this.nodeTimeseries = nodeTimeseries;
    }

    public Application application() { return application; }
    public ClusterSpec clusterSpec() { return clusterSpec; }
    public Cluster cluster() { return cluster; }

    /** Returns the relative load adjustment that should be made to this cluster given available measurements. */
    public Load loadAdjustment() {
        if (nodeTimeseries().isEmpty()) return Load.one();

        Load adjustment = peakLoad().divide(idealLoad());
        if (! safeToScaleDown())
            adjustment = adjustment.map(v -> v < 1 ? 1 : v);
        return adjustment;
    }

    /** Are we in a position to make decisions to scale down at this point? */
    private boolean safeToScaleDown() {
        if (hasScaledIn(scalingDuration().multipliedBy(3))) return false;
        if (nodeTimeseries().measurementsPerNode() < 4) return false;
        if (nodeTimeseries().nodesMeasured() != nodeCount()) return false;
        return true;
    }

    private boolean hasScaledIn(Duration period) {
        return cluster.lastScalingEvent().map(event -> event.at()).orElse(Instant.MIN)
                      .isAfter(clock.instant().minus(period));
    }

    /** Returns the predicted duration of a rescaling of this cluster */
    public Duration scalingDuration() { return scalingDuration; }

    public ClusterNodesTimeseries nodeTimeseries() { return nodeTimeseries; }

    public ClusterTimeseries clusterTimeseries() { return clusterTimeseries; }

    /**
     * Returns the predicted max query growth rate per minute as a fraction of the average traffic
     * in the scaling window
     */
    public double maxQueryGrowthRate() {
        if (maxQueryGrowthRate != null) return maxQueryGrowthRate;
        return maxQueryGrowthRate = clusterTimeseries().maxQueryGrowthRate(scalingDuration(), clock);
    }

    /** Returns the average query rate in the scaling window as a fraction of the max observed query rate */
    public double queryFractionOfMax() {
        if (queryFractionOfMax != null) return queryFractionOfMax;
        return queryFractionOfMax = clusterTimeseries().queryFractionOfMax(scalingDuration(), clock);
    }

    /** Returns the average of the last load measurement from each node. */
    public Load currentLoad() { return nodeTimeseries().currentLoad(); }

    /** Returns the average of all load measurements from all nodes*/
    public Load averageLoad() { return nodeTimeseries().averageLoad(); }

    /** Returns the average of the peak load measurement in each dimension, from each node. */
    public Load peakLoad() { return nodeTimeseries().peakLoad(); }

    /** The number of nodes this cluster has, or will have if not deployed yet. */
    // TODO: Make this the deployed, not current count
    public int nodeCount() {
        if ( ! nodes.isEmpty()) return (int)nodes.stream().count();
        return cluster.minResources().nodes();
    }

    /** The number of groups this cluster has, or will have if not deployed yet. */
    // TODO: Make this the deployed, not current count
    public int groupCount() {
        if ( ! nodes.isEmpty()) return (int)nodes.stream().mapToInt(node -> node.allocation().get().membership().cluster().group().get().index()).distinct().count();
        return cluster.minResources().groups();
    }

    public int groupSize() {
        // ceil: If the division does not produce a whole number we assume some node is missing
        return (int)Math.ceil((double)nodeCount() / groupCount());
    }

    /** Returns the relative load adjustment accounting for redundancy in this. */
    public Load redundancyAdjustment() {
        return loadWith(nodeCount(), groupCount());
    }

    /**
     * Returns the relative load adjustment accounting for redundancy given these nodes+groups
     * relative to node nodes+groups in this.
     */
    public Load loadWith(int trueNodes, int trueGroups) {
        int nodes = nodesAdjustedForRedundancy(trueNodes, trueGroups);
        int groups = groupsAdjustedForRedundancy(trueNodes, trueGroups);
        if (clusterSpec().type() == ClusterSpec.Type.content) { // load scales with node share of content
            int groupSize = nodes / groups;

            // Cpu: Query cpu scales with cluster size, write cpu scales with group size
            // Memory and disk: Scales with group size

            // The fixed cost portion of cpu does not scale with changes to the node count
            double queryCpuPerGroup = fixedCpuCostFraction + (1 - fixedCpuCostFraction) * groupSize() / groupSize;

            double queryCpu = queryCpuPerGroup * groupCount() / groups;
            double writeCpu = (double)groupSize() / groupSize;
            return new Load(queryCpuFraction() * queryCpu + (1 - queryCpuFraction()) * writeCpu,
                            (double)groupSize() / groupSize,
                            (double)groupSize() / groupSize);
        }
        else {
            return new Load((double)nodeCount() / nodes, 1, 1);
        }
    }

    /**
     * Returns the ideal load across the nodes of this sich that each node will be at ideal load
     * if one of  the nodes go down.
     */
    public Load idealLoad() {
        return new Load(idealCpuLoad(), idealMemoryLoad, idealDiskLoad()).divide(redundancyAdjustment());
    }

    public int nodesAdjustedForRedundancy(int nodes, int groups) {
        int groupSize = (int)Math.ceil((double)nodes / groups);
        return nodes > 1 ? (groups == 1 ? nodes - 1 : nodes - groupSize) : nodes;
    }

    public int groupsAdjustedForRedundancy(int nodes, int groups) {
        return nodes > 1 ? (groups == 1 ? 1 : groups - 1) : groups;
    }

    /** Ideal cpu load must take the application traffic fraction into account. */
    private double idealCpuLoad() {
        double queryCpuFraction = queryCpuFraction();

        // What's needed to have headroom for growth during scale-up as a fraction of current resources?
        double growthRateHeadroom = 1 + maxQueryGrowthRate() * scalingDuration().toMinutes();
        // Cap headroom at 10% above the historical observed peak
        if (queryFractionOfMax() != 0)
            growthRateHeadroom = Math.min(growthRateHeadroom, 1 / queryFractionOfMax() + 0.1);

        // How much headroom is needed to handle sudden arrival of additional traffic due to another zone going down?
        double trafficShiftHeadroom;
        if (application.status().maxReadShare() == 0) // No traffic fraction data
            trafficShiftHeadroom = 2.0; // assume we currently get half of the global share of traffic
        else if (application.status().currentReadShare() == 0)
            trafficShiftHeadroom = 1/application.status().maxReadShare();
        else
            trafficShiftHeadroom = application.status().maxReadShare() / application.status().currentReadShare();
        trafficShiftHeadroom = Math.min(trafficShiftHeadroom, 1/application.status().maxReadShare());

        // Assumptions: 1) Write load is not organic so we should not grow to handle more.
        //                 (TODO: But allow applications to set their target write rate and size for that)
        //              2) Write load does not change in BCP scenarios.
        return queryCpuFraction * 1/growthRateHeadroom * 1/trafficShiftHeadroom * idealQueryCpuLoad +
               (1 - queryCpuFraction) * idealWriteCpuLoad;
    }

    /** The estimated fraction of cpu usage which goes to processing queries vs. writes */
    public double queryCpuFraction() {
        OptionalDouble queryRate = clusterTimeseries().queryRate(scalingDuration(), clock);
        OptionalDouble writeRate = clusterTimeseries().writeRate(scalingDuration(), clock);
        if (queryRate.orElse(0) == 0 && writeRate.orElse(0) == 0) return queryCpuFraction(0.5);
        return queryCpuFraction(queryRate.orElse(0) / (queryRate.orElse(0) + writeRate.orElse(0)));
    }

    private double queryCpuFraction(double queryRateFraction) {
        double relativeQueryCost = 9; // How much more expensive are queries than writes? TODO: Measure
        double writeFraction = 1 - queryRateFraction;
        return queryRateFraction * relativeQueryCost / (queryRateFraction * relativeQueryCost + writeFraction);
    }

    private static Duration computeScalingDuration(Cluster cluster, ClusterSpec clusterSpec) {
        int completedEventCount = 0;
        Duration totalDuration = Duration.ZERO;
        for (ScalingEvent event : cluster.scalingEvents()) {
            if (event.duration().isEmpty()) continue;
            completedEventCount++;
            // Assume we have missed timely recording completion if it is longer than 4 days
            totalDuration = totalDuration.plus(maximum(Duration.ofDays(4), event.duration().get()));
        }
        if (completedEventCount == 0) { // Use defaults
            if (clusterSpec.isStateful()) return Duration.ofHours(12);
            return Duration.ofMinutes(10);
        }
        else {
            Duration predictedDuration = totalDuration.dividedBy(completedEventCount);

            if ( clusterSpec.isStateful() ) // TODO: Remove when we have reliable completion for content clusters
                predictedDuration = minimum(Duration.ofHours(12), predictedDuration);

            predictedDuration = minimum(Duration.ofMinutes(5), predictedDuration);

            return predictedDuration;
        }
    }

    private static Duration minimum(Duration smallestAllowed, Duration duration) {
        if (duration.minus(smallestAllowed).isNegative())
            return smallestAllowed;
        return duration;
    }

    private static Duration maximum(Duration largestAllowed, Duration duration) {
        if ( ! duration.minus(largestAllowed).isNegative())
            return largestAllowed;
        return duration;
    }

    private double idealDiskLoad() {
        // Stateless clusters are not expected to consume more disk over time -
        // if they do it is due to logs which will be rotated away right before the disk is full
        return clusterSpec.isStateful() ? idealContentDiskLoad : idealContainerDiskLoad;
    }

    /**
     * Create a cluster model if possible and logs a warning and returns empty otherwise.
     * This is useful in cases where it's possible to continue without the cluser model,
     * as QuestDb is known to temporarily fail during reading of data.
     */
    public static Optional<ClusterModel> create(Application application,
                                                ClusterSpec clusterSpec,
                                                Cluster cluster,
                                                NodeList clusterNodes,
                                                MetricsDb metricsDb,
                                                Clock clock) {
        try {
            return Optional.of(new ClusterModel(application, clusterSpec, cluster, clusterNodes, metricsDb, clock));
        }
        catch (Exception e) {
            log.log(Level.WARNING, "Failed creating a cluster model for " + application + " " + cluster, e);
            return Optional.empty();
        }
    }

}