aboutsummaryrefslogtreecommitdiffstats
path: root/staging_vespalib/src/vespa/vespalib/util/sequencedtaskexecutor.cpp
blob: 727894397a71de609bddf9ee281541ac284853dd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.

#include "sequencedtaskexecutor.h"
#include "adaptive_sequenced_executor.h"
#include "singleexecutor.h"
#include <vespa/vespalib/util/blockingthreadstackexecutor.h>
#include <vespa/vespalib/util/size_literals.h>
#include <vespa/vespalib/stllike/hashtable.h>
#include <cassert>

namespace vespalib {

namespace {

constexpr uint32_t stackSize = 128_Ki;
constexpr uint8_t MAGIC = 255;

bool
isLazy(const std::vector<std::unique_ptr<vespalib::SyncableThreadExecutor>> & executors) {
    for (const auto &executor : executors) {
        if (dynamic_cast<const vespalib::SingleExecutor *>(executor.get()) == nullptr) {
            return false;
        }
    }
    return true;
}

}

std::unique_ptr<ISequencedTaskExecutor>
SequencedTaskExecutor::create(vespalib::Runnable::init_fun_t func, uint32_t threads, uint32_t taskLimit,
                              OptimizeFor optimize, uint32_t kindOfWatermark, duration reactionTime)
{
    if (optimize == OptimizeFor::ADAPTIVE) {
        size_t num_strands = std::min(taskLimit, threads*32);
        return std::make_unique<AdaptiveSequencedExecutor>(num_strands, threads, kindOfWatermark, taskLimit);
    } else {
        auto executors = std::make_unique<std::vector<std::unique_ptr<SyncableThreadExecutor>>>();
        executors->reserve(threads);
        for (uint32_t id = 0; id < threads; ++id) {
            if (optimize == OptimizeFor::THROUGHPUT) {
                uint32_t watermark = kindOfWatermark == 0 ? taskLimit / 10 : kindOfWatermark;
                executors->push_back(std::make_unique<SingleExecutor>(func, taskLimit, watermark, reactionTime));
            } else {
                executors->push_back(std::make_unique<BlockingThreadStackExecutor>(1, stackSize, taskLimit, func));
            }
        }
        return std::unique_ptr<ISequencedTaskExecutor>(new SequencedTaskExecutor(std::move(executors)));
    }
}

SequencedTaskExecutor::~SequencedTaskExecutor()
{
    sync();
}

SequencedTaskExecutor::SequencedTaskExecutor(std::unique_ptr<std::vector<std::unique_ptr<vespalib::SyncableThreadExecutor>>> executors)
    : ISequencedTaskExecutor(executors->size()),
      _executors(std::move(executors)),
      _lazyExecutors(isLazy(*_executors)),
      _component2Id(vespalib::hashtable_base::getModuloStl(getNumExecutors()*8), MAGIC),
      _mutex(),
      _nextId(0)
{
    assert(getNumExecutors() < 256);
}

void
SequencedTaskExecutor::setTaskLimit(uint32_t taskLimit)
{
    for (const auto &executor : *_executors) {
        executor->setTaskLimit(taskLimit);
    }
}

void
SequencedTaskExecutor::executeTask(ExecutorId id, vespalib::Executor::Task::UP task)
{
    assert(id.getId() < _executors->size());
    auto rejectedTask = (*_executors)[id.getId()]->execute(std::move(task));
    assert(!rejectedTask);
}

void
SequencedTaskExecutor::sync() {
    wakeup();
    for (auto &executor : *_executors) {
        executor->sync();
    }
}

void
SequencedTaskExecutor::wakeup() {
    if (_lazyExecutors) {
        for (auto &executor : *_executors) {
            //Enforce parallel wakeup of napping executors.
            executor->wakeup();
        }
    }
}

ExecutorStats
SequencedTaskExecutor::getStats()
{
    ExecutorStats accumulatedStats;
    for (auto &executor :* _executors) {
        accumulatedStats += executor->getStats();
    }
    return accumulatedStats;
}

ISequencedTaskExecutor::ExecutorId
SequencedTaskExecutor::getExecutorId(uint64_t componentId) const {
    uint32_t shrunkId = componentId % _component2Id.size();
    uint8_t executorId = _component2Id[shrunkId];
    if (executorId == MAGIC) {
        std::lock_guard guard(_mutex);
        if (_component2Id[shrunkId] == MAGIC) {
            _component2Id[shrunkId] = _nextId % getNumExecutors();
            _nextId++;
        }
        executorId = _component2Id[shrunkId];
    }
    return ExecutorId(executorId);
}

const vespalib::SyncableThreadExecutor*
SequencedTaskExecutor::first_executor() const
{
    if (_executors->empty()) {
        return nullptr;
    }
    return _executors->front().get();
}

} // namespace search